Cum să găsiți baza unui sistem dat de vectori. Dependența liniară și independența liniară a vectorilor. Baza vectorilor. Sistem de coordonate afin Care este baza unui sistem vectorial

Găsiți baza sistemului de vectori și vectori care nu sunt incluși în bază, extindeți-le în funcție de bază:

A 1 = {5, 2, -3, 1}, A 2 = {4, 1, -2, 3}, A 3 = {1, 1, -1, -2}, A 4 = {3, 4, -1, 2}, A 5 = {13, 8, -7, 4}.

Soluţie. Considerăm un sistem omogen de ecuații liniare

A 1 X 1 + A 2 X 2 + A 3 X 3 + A 4 X 4 + A 5 X 5 = 0

sau în formă extinsă.

Vom rezolva acest sistem prin metoda Gaussiană, fără a schimba rândurile și coloanele și, în plus, alegând elementul principal nu în colțul din stânga sus, ci de-a lungul întregului rând. Provocarea este să selectați partea diagonală a sistemului transformat de vectori.

~ ~

~ ~ ~ .

Sistemul de vectori permis, echivalent cu cel original, are forma

A 1 1 X 1 + A 2 1 X 2 + A 3 1 X 3 + A 4 1 X 4 + A 5 1 X 5 = 0 ,

Unde A 1 1 = , A 2 1 = , A 3 1 = , A 4 1 = , A 5 1 = . (1)

Vectori A 1 1 , A 3 1 , A 4 1 formează un sistem diagonal. Prin urmare, vectorii A 1 , A 3 , A 4 formează baza sistemului vectorial A 1 , A 2 , A 3 , A 4 , A 5 .

Să extindem acum vectorii A 2 Și A 5 pe bază A 1 , A 3 , A 4 . Pentru a face acest lucru, extindem mai întâi vectorii corespunzători A 2 1 Și A 5 1 sistem diagonal A 1 1 , A 3 1 , A 4 1, ținând cont de faptul că coeficienții de expansiune a unui vector de-a lungul sistemului diagonal sunt coordonatele acestuia x i.

Din (1) avem:

A 2 1 = A 3 1 · (-1) + A 4 1 0 + A 1 1 ·1 => A 2 1 = A 1 1 – A 3 1 .

A 5 1 = A 3 1 0 + A 4 1 1 + A 1 1 ·2 => A 5 1 = 2A 1 1 + A 4 1 .

Vectori A 2 Și A 5 sunt extinse ca bază A 1 , A 3 , A 4 cu aceiași coeficienți ca vectorii A 2 1 Și A 5 1 sistem diagonal A 1 1 , A 3 1 , A 4 1 (acei coeficienți x i). Prin urmare,

A 2 = A 1 – A 3 , A 5 = 2A 1 + A 4 .

Sarcini. 1.Găsiți baza sistemului de vectori și vectori neincluși în bază, extindeți-le în funcție de bază:

1. A 1 = { 1, 2, 1 }, A 2 = { 2, 1, 3 }, A 3 = { 1, 5, 0 }, A 4 = { 2, -2, 4 }.

2. A 1 = { 1, 1, 2 }, A 2 = { 0, 1, 2 }, A 3 = { 2, 1, -4 }, A 4 = { 1, 1, 0 }.

3. A 1 = { 1, -2, 3 }, A 2 = { 0, 1, -1 }, A 3 = { 1, 3, 0 }, A 4 = { 0, -7, 3 }, A 5 = { 1, 1, 1 }.

4. A 1 = { 1, 2, -2 }, A 2 = { 0, -1, 4 }, A 3 = { 2, -3, 3 }.

2. Găsiți toate bazele sistemului vectorial:

1. A 1 = { 1, 1, 2 }, A 2 = { 3, 1, 2 }, A 3 = { 1, 2, 1 }, A 4 = { 2, 1, 2 }.

2. A 1 = { 1, 1, 1 }, A 2 = { -3, -5, 5 }, A 3 = { 3, 4, -1 }, A 4 = { 1, -1, 4 }.

O combinație liniară de vectori este un vector
, unde λ 1, ..., λ m sunt coeficienți arbitrari.

Sistem vectorial
se numește dependent liniar dacă există o combinație liniară a acesteia egală cu , care are cel puțin un coeficient diferit de zero.

Sistem vectorial
se numește liniar independent dacă în oricare dintre combinațiile sale liniare egal cu , toți coeficienții sunt zero.

Baza sistemului vectorial
este numit subsistemul său nevid liniar independent, prin care poate fi exprimat orice vector al sistemului.

Exemplul 2. Găsiți baza unui sistem de vectori = (1, 2, 2, 4),= (2, 3, 5, 1),= (3, 4, 8, -2),= (2, 5, 0, 3) și exprimă vectorii rămași prin bază.

Rezolvare: Construim o matrice în care coordonatele acestor vectori sunt aranjate în coloane. Îl aducem într-o formă treptat.

~
~
~
.

Baza acestui sistem este formată din vectori ,,, care corespund elementelor conducătoare ale liniilor, evidențiate în cercuri. Pentru a exprima un vector Rezolvați ecuația x 1 +x 2 + x 4 =. Se reduce la un sistem de ecuații liniare, a cărui matrice este obținută din permutarea inițială a coloanei corespunzătoare , în locul coloanei de membri liberi. Prin urmare, pentru a rezolva sistemul, folosim matricea rezultată în formă treptă, făcând rearanjamentele necesare în ea.

Găsim în mod constant:

x 1 + 4 = 3, x 1 = -1;

= -+2.

Observație 1. Dacă este necesar să se exprimă mai mulți vectori prin bază, atunci pentru fiecare dintre ei se construiește un sistem corespunzător de ecuații liniare. Aceste sisteme vor diferi doar în coloanele de membri liberi. Prin urmare, pentru a le rezolva, puteți crea o matrice, care va avea mai multe coloane de termeni liberi. Mai mult, fiecare sistem este rezolvat independent de celelalte.

Observația 2. Pentru a exprima orice vector, este suficient să folosiți doar vectorii de bază ai sistemului care îl precedă. În acest caz, nu este nevoie să reformatați matricea; este suficient să puneți o linie verticală în locul potrivit.

Exercițiul 2. Aflați baza sistemului de vectori și exprimați vectorii rămași prin baza:

A) = (1, 3, 2, 0),= (3, 4, 2, 1),= (1, -2, -2, 1),= (3, 5, 1, 2);

b) = (2, 1, 2, 3),= (1, 2, 2, 3),= (3, -1, 2, 2),= (4, -2, 2, 2);

V) = (1, 2, 3),= (2, 4, 3),= (3, 6, 6),= (4, -2, 1);= (2, -6, -2).

    1. 3. Sistem fundamental de soluții

Un sistem de ecuații liniare se numește omogen dacă toți termenii săi liberi sunt egali cu zero.

Sistemul fundamental de soluții al unui sistem omogen de ecuații liniare stă la baza mulțimii soluțiilor sale.

Să ni se dea un sistem neomogen de ecuații liniare. Un sistem omogen asociat unuia dat este un sistem obținut dintr-unul dat prin înlocuirea tuturor termenilor liberi cu zerouri.

Dacă sistemul neomogen este consistent și nedefinit, atunci soluția sa arbitrară are forma f n +  1 f o1 + ... +  k f o k, unde f n este o soluție particulară a sistemului neomogen și f o1, ... , f o k este soluţiile de sistem fundamentale ale sistemului omogen asociat.

Exemplul 3. Găsiți o anumită soluție a sistemului neomogen din Exemplul 1 și sistem fundamental soluţii ale sistemului omogen asociat.

Soluție.Să scriem soluția obținută în exemplul 1 sub formă vectorială și să descompunăm vectorul rezultat într-o sumă peste parametrii liberi prezenți în el și valori numerice fixe:

= (x 1 , x 2 , x 3 , x 4) = (–2a + 7b – 2, a, –2b + 1, b) = (–2a, a, 0, 0) + (7b, 0, – 2b, b) + +(– 2, 0, 1, 0) = a(-2, 1, 0, 0) + b(7, 0, -2, 1) + (– 2, 0, 1, 0) ).

Se obține f n = (– 2, 0, 1, 0), f o1 = (-2, 1, 0, 0), f o2 = (7, 0, -2, 1).

Cometariu. Problema găsirii unui sistem fundamental de soluții la un sistem omogen este rezolvată în mod similar.

Exercițiul 3.1 Aflați sistemul fundamental de soluții al unui sistem omogen:

A)

b)

c) 2x 1 – x 2 +3x 3 = 0.

Exercițiul 3.2. Găsiți o anumită soluție pentru sistemul neomogen și un sistem fundamental de soluții pentru sistemul omogen asociat:

A)

b)

Definiţia basis. Un sistem de vectori formează o bază dacă:

1) este liniar independent,

2) orice vector de spațiu poate fi exprimat liniar prin el.

Exemplul 1. Baza spatiala: .

2. În sistemul vectorial baza sunt vectorii: , deoarece exprimată liniar în termeni de vectori.

Cometariu. Pentru a găsi baza unui sistem dat de vectori trebuie să:

1) scrieți coordonatele vectorilor în matrice,

2) folosind transformări elementare, aduceți matricea într-o formă triunghiulară,

3) rândurile diferite de zero ale matricei vor fi baza sistemului,

4) numărul de vectori din bază este egal cu rangul matricei.

Teorema Kronecker-Capelli

Teorema Kronecker-Capelli oferă un răspuns cuprinzător la întrebarea privind compatibilitatea unui sistem arbitrar de ecuații liniare cu necunoscute

Teorema Kronecker–Capelli. Un sistem de ecuații algebrice liniare este consistent dacă și numai dacă rangul matricei extinse a sistemului este egal cu rangul matricei principale, .

Algoritmul pentru găsirea tuturor soluțiilor unui sistem simultan de ecuații liniare decurge din teorema Kronecker–Capelli și din următoarele teoreme.

Teorema. Dacă rangul unui sistem comun este egal cu numărul de necunoscute, atunci sistemul are o soluție unică.

Teorema. Dacă rangul unui sistem comun este mai mic decât numărul de necunoscute, atunci sistemul are un număr infinit de soluții.

Algoritm pentru rezolvarea unui sistem arbitrar de ecuații liniare:

1. Găsiți rangurile matricelor principale și extinse ale sistemului. Dacă nu sunt egale (), atunci sistemul este inconsecvent (nu are soluții). Dacă rangurile sunt egale ( , atunci sistemul este consistent.

2. Pentru un sistem comun, găsim unele minore, a căror ordine determină rangul matricei (un astfel de minor se numește de bază). Să compunem un nou sistem de ecuații în care coeficienții necunoscutelor sunt incluși în minorul de bază (aceste necunoscute se numesc necunoscute principale) și să aruncăm ecuațiile rămase. Vom lăsa principalele necunoscute cu coeficienți în stânga și vom muta necunoscutele rămase (se numesc necunoscute libere) în partea dreaptă a ecuațiilor.

3. Să găsim expresii pentru principalele necunoscute în ceea ce privește cele libere. Obținem soluția generală a sistemului.



4. Dând valori arbitrare necunoscutelor libere, obținem valorile corespunzătoare ale principalelor necunoscute. În acest fel găsim soluții parțiale ale sistemului original de ecuații.

Programare liniară. Noțiuni de bază

Programare liniară este o ramură a programării matematice care studiază metode de rezolvare a problemelor extreme care se caracterizează printr-o relație liniară între variabile și un criteriu liniar.

O condiție necesară Formularea problemei de programare liniară include restricții privind disponibilitatea resurselor, cantitatea cererii, capacitatea de producție a întreprinderii și alți factori de producție.

Esența programării liniare este de a găsi punctele celei mai mari sau mai mici valori ale unei anumite funcții sub un anumit set de restricții impuse argumentelor și generatoarelor. sistem de restricții , care, de regulă, are un număr infinit de soluții. Fiecare set de valori variabile (argumente ale funcției F ) care satisfac sistemul de constrângeri se numește plan valabil probleme de programare liniară. Funcţie F , al cărui maxim sau minim este determinat se numește funcția țintă sarcini. Un plan fezabil la care se atinge maximul sau minimul unei funcții F , numit plan optim sarcini.

Sistemul de restricții care determină multe planuri este dictat de condițiile de producție. Problemă de programare liniară ( ZLP ) este alegerea celui mai profitabil (optim) dintr-un set de planuri fezabile.

În formularea sa generală, problema de programare liniară arată astfel:

Există variabile? x = (x 1, x 2, ... x n) și funcția acestor variabile f(x) = f (x 1, x 2, ... x n) , Care e numit ţintă funcții. Sarcina este stabilită: să găsească extremul (maxim sau minim) al funcției obiectiv f(x) cu condiţia ca variabilele X aparțin unei anumite zone G :

În funcție de tipul funcției f(x) si regiuni G și distingeți între secțiuni ale programării matematice: programare pătratică, programare convexă, programare cu numere întregi etc. Programarea liniară se caracterizează prin faptul că
o functie f(x) este o funcție liniară a variabilelor x 1, x 2, … x n
b) regiune G determinat de sistem liniar egalități sau inegalități.

Exprimarea formei numit combinație liniară de vectori A 1 , A 2 ,...,A n cu cote λ 1, λ 2 ,...,λ n.

Determinarea dependenței liniare a unui sistem de vectori

Sistem vectorial A 1 , A 2 ,...,A n numit dependent liniar, dacă există un set de numere diferit de zero λ 1, λ 2 ,...,λ n, în care combinaţia liniară de vectori λ 1 *A 1 +λ 2 *A 2 +...+λ n *A n egal cu vectorul zero, adică sistemul de ecuații: are o soluție diferită de zero.
Set de numere λ 1, λ 2 ,...,λ n este diferit de zero dacă cel puțin unul dintre numere λ 1, λ 2 ,...,λ n diferit de zero.

Determinarea independenței liniare a unui sistem de vectori

Sistem vectorial A 1 , A 2 ,...,A n numit liniar independent, dacă combinația liniară a acestor vectori λ 1 *A 1 +λ 2 *A 2 +...+λ n *A n egal cu vectorul zero numai pentru un set zero de numere λ 1, λ 2 ,...,λ n , adică sistemul de ecuații: A 1 x 1 +A 2 x 2 +...+A n x n =Θ are o soluție unică zero.

Exemplul 29.1

Verificați dacă un sistem de vectori este dependent liniar

Soluţie:

1. Compunem un sistem de ecuații:

2. O rezolvăm folosind metoda Gauss. Transformările Jordanano ale sistemului sunt date în Tabelul 29.1. La calcul, părțile din dreapta ale sistemului nu sunt notate, deoarece sunt egale cu zero și nu se modifică în timpul transformărilor Jordan.

3. Din ultimele trei rânduri ale tabelului notează un sistem rezolvat echivalent cu cel original sistem:

4. Obținem soluția generală a sistemului:

5. După ce ați stabilit valoarea variabilei libere x 3 =1 la discreția dvs., obținem o anumită soluție diferită de zero X=(-3,2,1).

Răspuns: Astfel, pentru o mulțime de numere nenule (-3,2,1), combinația liniară de vectori este egală cu vectorul zero -3A 1 +2A 2 +1A 3 =Θ. Prin urmare, sistem vectorial dependent liniar.

Proprietățile sistemelor vectoriale

Proprietate (1)
Dacă un sistem de vectori este dependent liniar, atunci cel puțin unul dintre vectori este extins în ceea ce privește ceilalți și, dimpotrivă, dacă cel puțin unul dintre vectorii sistemului este extins în raport cu ceilalți, atunci sistemul de vectori este dependent liniar.

Proprietate (2)
Dacă orice subsistem de vectori este dependent liniar, atunci întregul sistem este dependent liniar.

Proprietate (3)
Dacă un sistem de vectori este liniar independent, atunci oricare dintre subsistemele sale este liniar independent.

Proprietate (4)
Orice sistem de vectori care conține un vector zero este dependent liniar.

Proprietate (5)
Un sistem de vectori m-dimensionali este întotdeauna dependent liniar dacă numărul de vectori n este mai mare decât dimensiunea lor (n>m)

Baza sistemului vectorial

Baza sistemului vectorial A 1 , A 2 ,..., A n un astfel de subsistem B 1 , B 2 ,...,B r se numește(fiecare dintre vectorii B 1,B 2,...,B r este unul dintre vectorii A 1, A 2,..., A n), care îndeplinește următoarele condiții:
1. B 1 ,B 2 ,...,B r sistem liniar independent de vectori;
2. orice vector A j sistemul A 1 , A 2 ,..., A n este exprimat liniar prin vectorii B 1 , B 2 ,..., B r

r— numărul de vectori incluși în bază.

Teorema 29.1 Pe baza unitară a unui sistem de vectori.

Dacă un sistem de vectori m-dimensionali conține m vectori unitari diferiți E 1 E 2 ,..., E m , atunci ei formează baza sistemului.

Algoritm pentru găsirea bazei unui sistem de vectori

Pentru a afla baza sistemului de vectori A 1 ,A 2 ,...,A n este necesar:

  • Creați un sistem omogen de ecuații corespunzător sistemului de vectori A 1 x 1 +A 2 x 2 +...+A n x n =Θ
  • Adu acest sistem

În articolul despre vectorii n-dimensionali, am ajuns la conceptul de spațiu liniar generat de un set de vectori n-dimensionali. Acum trebuie să luăm în considerare concepte la fel de importante, cum ar fi dimensiunea și baza unui spațiu vectorial. Ele sunt direct legate de conceptul de sistem liniar independent de vectori, deci este recomandat suplimentar să vă amintiți elementele de bază ale acestui subiect.

Să introducem câteva definiții.

Definiția 1

Dimensiunea spațiului vectorial– un număr corespunzător numărului maxim de vectori liniar independenți din acest spațiu.

Definiția 2

Baza spațiului vectorial– o mulțime de vectori liniar independenți, ordonați și egali ca număr cu dimensiunea spațiului.

Să considerăm un anumit spațiu de n -vectori. Dimensiunea sa este în mod corespunzător egală cu n. Să luăm un sistem de vectori de n unități:

e (1) = (1, 0, . . . 0) e (2) = (0, 1, . . , 0) e (n) = (0, 0, . . , 1)

Folosim acești vectori ca componente ale matricei A: va fi o matrice unitară cu dimensiunea n cu n. Rangul acestei matrice este n. Prin urmare, sistemul vectorial e (1) , e (2) , . . . , e(n) este liniar independent. În acest caz, este imposibil să adăugați un singur vector la sistem fără a-i încălca independența liniară.

Deoarece numărul de vectori din sistem este n, atunci dimensiunea spațiului vectorilor n-dimensionali este n, iar vectorii unitari sunt e (1), e (2), . . . , e (n) sunt baza spațiului specificat.

Din definiția rezultată putem concluziona: orice sistem de vectori n-dimensionali în care numărul de vectori este mai mic decât n nu este o bază de spațiu.

Dacă schimbăm primul și al doilea vector, obținem un sistem de vectori e (2) , e (1) , . . . , e (n) . Va fi, de asemenea, baza unui spațiu vectorial n-dimensional. Să creăm o matrice luând ca rânduri vectorii sistemului rezultat. Matricea poate fi obținută din matricea de identitate schimbând primele două rânduri, rangul său va fi n. Sistemul e (2) , e (1) , . . . , e(n) este independent liniar și este baza unui spațiu vectorial n-dimensional.

Prin rearanjarea altor vectori în sistemul original, obținem o altă bază.

Putem lua un sistem liniar independent de vectori non-unitari și va reprezenta, de asemenea, baza unui spațiu vectorial n-dimensional.

Definiția 3

Un spațiu vectorial cu dimensiunea n are atâtea baze câte sisteme liniar independente de vectori n-dimensionali ai numărului n.

Planul este un spațiu bidimensional - baza sa va fi oricare doi vectori necoliniari. Bază spatiu tridimensional oricare trei vectori necoplanari vor servi.

Să luăm în considerare aplicarea acestei teorii folosind exemple specifice.

Exemplul 1

Date inițiale: vectori

a = (3 , - 2 , 1) b = (2 , 1 , 2) c = (3 , - 1 , - 2)

Este necesar să se determine dacă vectorii specificați sunt baza unui spațiu vectorial tridimensional.

Soluţie

Pentru a rezolva problema, studiem sistemul dat de vectori pentru dependența liniară. Să creăm o matrice, în care rândurile sunt coordonatele vectorilor. Să determinăm rangul matricei.

A = 3 2 3 - 2 1 - 1 1 2 - 2 A = 3 - 2 1 2 1 2 3 - 1 - 2 = 3 1 (- 2) + (- 2) 2 3 + 1 2 · (- 1) - 1 · 1 · 3 - (- 2) · 2 · (- 2) - 3 · 2 · (- 1) = = - 25 ≠ 0 ⇒ R a n k (A) = 3

În consecință, vectorii specificați de condiția problemei sunt independenți liniar, iar numărul lor este egal cu dimensiunea spațiului vectorial - ei stau la baza spațiului vectorial.

Răspuns: vectorii indicați stau la baza spațiului vectorial.

Exemplul 2

Date inițiale: vectori

a = (3, - 2, 1) b = (2, 1, 2) c = (3, - 1, - 2) d = (0, 1, 2)

Este necesar să se determine dacă sistemul specificat de vectori poate fi baza spațiului tridimensional.

Soluţie

Sistemul de vectori specificat în formularea problemei este dependent liniar, deoarece număr maxim vectori liniar independenți este egal cu 3. Astfel, sistemul de vectori indicat nu poate servi ca bază pentru un spațiu vectorial tridimensional. Dar este de remarcat faptul că subsistemul sistemului original a = (3, - 2, 1), b = (2, 1, 2), c = (3, - 1, - 2) este o bază.

Răspuns: sistemul de vectori indicat nu este o bază.

Exemplul 3

Date inițiale: vectori

a = (1, 2, 3, 3) b = (2, 5, 6, 8) c = (1, 3, 2, 4) d = (2, 5, 4, 7)

Pot fi ele baza spațiului cu patru dimensiuni?

Soluţie

Să creăm o matrice folosind coordonatele vectorilor dați ca șiruri

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7

Folosind metoda Gauss, determinăm rangul matricei:

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7 ~ 1 2 3 3 0 1 0 2 0 1 - 1 1 0 1 - 2 1 ~ ~ 1 2 3 3 0 1 0 2 0 0 - 1 - 1 0 0 - 2 - 1 ~ 1 2 3 3 0 1 0 2 0 0 - 1 - 1 0 0 0 1 ⇒ ⇒ R a n k (A) = 4

În consecință, sistemul de vectori dați este liniar independent și numărul lor este egal cu dimensiunea spațiului vectorial - ei sunt baza unui spațiu vectorial cu patru dimensiuni.

Răspuns: vectorii dați sunt baza spațiului cu patru dimensiuni.

Exemplul 4

Date inițiale: vectori

a (1) = (1 , 2 , - 1 , - 2) a (2) = (0 , 2 , 1 , - 3) a (3) = (1 , 0 , 0 , 5)

Formează ele baza unui spațiu de dimensiunea 4?

Soluţie

Sistemul original de vectori este liniar independent, dar numărul de vectori din el nu este suficient pentru a deveni baza unui spațiu cu patru dimensiuni.

Răspuns: nu, ei nu.

Descompunerea unui vector într-o bază

Să presupunem că vectorii arbitrari e (1) , e (2) , . . . , e (n) sunt baza unui spațiu vectorial n-dimensional. Să le adăugăm un anumit vector n-dimensional x →: sistemul de vectori rezultat va deveni liniar dependent. Proprietățile dependenței liniare afirmă că cel puțin unul dintre vectorii unui astfel de sistem poate fi exprimat liniar prin ceilalți. Reformulând această afirmație, putem spune că cel puțin unul dintre vectorii unui sistem dependent liniar poate fi extins în vectorii rămași.

Astfel, am ajuns la formularea celei mai importante teoreme:

Definiția 4

Orice vector al unui spațiu vectorial n-dimensional poate fi descompus în mod unic într-o bază.

Dovada 1

Să demonstrăm această teoremă:

să stabilim baza spațiului vectorial n-dimensional - e (1) , e (2) , . . . , e (n) . Să facem sistemul dependent liniar prin adăugarea unui vector n-dimensional x → la el. Acest vector poate fi exprimat liniar în termenii vectorilor originali e:

x = x 1 · e (1) + x 2 · e (2) + . . . + x n · e (n) , unde x 1 , x 2 , . . . , x n - unele numere.

Acum demonstrăm că o astfel de descompunere este unică. Să presupunem că nu este cazul și că există o altă descompunere similară:

x = x ~ 1 e (1) + x 2 ~ e (2) + . . . + x ~ n e (n) , unde x ~ 1 , x ~ 2 , . . . , x ~ n - unele numere.

Să scădem din laturile din stânga și din dreapta acestei egalități, respectiv, din stânga și din dreapta egalității x = x 1 · e (1) + x 2 · e (2) + . . . + x n · e (n) . Primim:

0 = (x ~ 1 - x 1) · e (1) + (x ~ 2 - x 2) · e (2) + . . . (x ~ n - x n) e (2)

Sistem de vectori de bază e (1) , e (2) , . . . , e(n) este liniar independent; prin definiția independenței liniare a unui sistem de vectori, egalitatea de mai sus este posibilă numai atunci când toți coeficienții sunt (x ~ 1 - x 1) , (x ~ 2 - x 2) , . . . , (x ~ n - x n) va fi egal cu zero. Din care va fi corect: x 1 = x ~ 1, x 2 = x ~ 2, . . . , x n = x ~ n . Și aceasta dovedește singura opțiune pentru descompunerea unui vector într-o bază.

În acest caz, coeficienții x 1, x 2, . . . , x n se numesc coordonatele vectorului x → în baza e (1) , e (2) , . . . , e (n) .

Teoria dovedită face clară expresia „ dat un vector n-dimensional x = (x 1 , x 2 , . . . , x n)”: se consideră un vector x → spațiu vectorial n-dimensional, iar coordonatele sale sunt specificate într-un anumită bază. De asemenea, este clar că același vector într-o altă bază a spațiului n-dimensional va avea coordonate diferite.

Luați în considerare următorul exemplu: să presupunem că într-o anumită bază a spațiului vectorial n-dimensional este dat un sistem de n vectori liniar independenți

și, de asemenea, este dat vectorul x = (x 1 , x 2 , . . . , x n).

Vectorii e 1 (1) , e 2 (2) , . . . , e n (n) în acest caz sunt, de asemenea, baza acestui spațiu vectorial.

Să presupunem că este necesar să se determine coordonatele vectorului x → în baza e 1 (1) , e 2 (2) , . . . , e n (n) , notat cu x ~ 1 , x ~ 2 , . . . , x ~ n.

Vector x → va fi reprezentat astfel:

x = x ~ 1 e (1) + x ~ 2 e (2) + . . . + x ~ n e (n)

Să scriem această expresie sub formă de coordonate:

(x 1 , x 2 , . . . , x n) = x ~ 1 (e (1) 1 , e (1) 2 , . . , e (1) n) + x ~ 2 (e (2) 1 , e (2) 2 , . . . , e (2) n) + . . . + + x ~ n · (e (n) 1 , e (n) 2 , . . . , e (n) n) = = (x ~ 1 e 1 (1) + x ~ 2 e 1 (2) + . . . + x ~ n e 1 (n) , x ~ 1 e 2 (1) + x ~ 2 e 2 (2) + + . . + x ~ n e 2 (n) , . . . , x ~ 1 e n (1) + x ~ 2 e n (2) + ... + x ~ n e n (n))

Egalitatea rezultată este echivalentă cu un sistem de n expresii algebrice liniare cu n variabile liniare necunoscute x ~ 1, x ~ 2, . . . , x ~ n:

x 1 = x ~ 1 e 1 1 + x ~ 2 e 1 2 + . . . + x ~ n e 1 n x 2 = x ~ 1 e 2 1 + x ~ 2 e 2 2 + . . . + x ~ n e 2 n ⋮ x n = x ~ 1 e n 1 + x ~ 2 e n 2 + . . . + x ~ n e n n

Matricea acestui sistem va avea următoarea formă:

e 1 (1) e 1 (2) ⋯ e 1 (n) e 2 (1) e 2 (2) ⋯ e 2 (n) ⋮ ⋮ ⋮ ⋮ e n (1) e n (2) ⋯ e n (n)

Fie aceasta o matrice A, iar coloanele sale sunt vectori ai unui sistem liniar independent de vectori e 1 (1), e 2 (2), . . . , e n (n) . Rangul matricei este n, iar determinantul său este diferit de zero. Aceasta indică faptul că sistemul de ecuații are o soluție unică, determinată de orice metodă convenabilă: de exemplu, metoda Cramer sau metoda matricei. Astfel putem determina coordonatele x ~ 1, x ~ 2, . . . , x ~ n vector x → în baza e 1 (1) , e 2 (2) , . . . , e n (n) .

Să aplicăm teoria luată în considerare la un exemplu specific.

Exemplul 6

Date inițiale: vectorii sunt specificați pe baza spațiului tridimensional

e (1) = (1 , - 1 , 1) e (2) = (3 , 2 , - 5) e (3) = (2 , 1 , - 3) x = (6 , 2 , - 7)

Este necesar să se confirme faptul că sistemul de vectori e (1), e (2), e (3) servește și ca bază a unui spațiu dat și, de asemenea, să se determine coordonatele vectorului x într-o bază dată.

Soluţie

Sistemul de vectori e (1), e (2), e (3) va sta la baza spațiului tridimensional dacă este liniar independent. Să aflăm această posibilitate determinând rangul matricei A, ale cărei rânduri sunt vectorii dați e (1), e (2), e (3).

Folosim metoda Gauss:

A = 1 - 1 1 3 2 - 5 2 1 - 3 ~ 1 - 1 1 0 5 - 8 0 3 - 5 ~ 1 - 1 1 0 5 - 8 0 0 - 1 5

R a n k (A) = 3 . Astfel, sistemul de vectori e (1), e (2), e (3) este liniar independent și este o bază.

Fie vectorul x → să aibă coordonatele x ~ 1, x ~ 2, x ~ 3 în bază. Relația dintre aceste coordonate este determinată de ecuația:

x 1 = x ~ 1 e 1 (1) + x ~ 2 e 1 (2) + x ~ 3 e 1 (3) x 2 = x ~ 1 e 2 (1) + x ~ 2 e 2 (2) + x ~ 3 e 2 (3) x 3 = x ~ 1 e 3 (1) + x ~ 2 e 3 (2) + x ~ 3 e 3 (3)

Să aplicăm valorile în funcție de condițiile problemei:

x ~ 1 + 3 x ~ 2 + 2 x ~ 3 = 6 - x ~ 1 + 2 x ~ 2 + x ~ 3 = 2 x ~ 1 - 5 x ~ 2 - 3 x 3 = - 7

Să rezolvăm sistemul de ecuații folosind metoda lui Cramer:

∆ = 1 3 2 - 1 2 1 1 - 5 - 3 = - 1 ∆ x ~ 1 = 6 3 2 2 2 1 - 7 - 5 - 3 = - 1 , x ~ 1 = ∆ x ~ 1 ∆ = - 1 - 1 = 1 ∆ x ~ 2 = 1 6 2 - 1 2 1 1 - 7 - 3 = - 1 , x ~ 2 = ∆ x ~ 2 ∆ = - 1 - 1 = 1 ∆ x ~ 3 = 1 3 6 - 1 2 2 1 - 5 - 7 = - 1 , x ~ 3 = ∆ x ~ 3 ∆ = - 1 - 1 = 1

Astfel, vectorul x → în baza e (1), e (2), e (3) are coordonatele x ~ 1 = 1, x ~ 2 = 1, x ~ 3 = 1.

Răspuns: x = (1 , 1 , 1)

Relația dintre baze

Să presupunem că într-o anumită bază a spațiului vectorial n-dimensional două liniare sisteme independente vectori:

c (1) = (c 1 (1) , c 2 (1) , . . . , c n (1)) c (2) = (c 1 (2) , c 2 (2) , . . . , c n (2)) ⋮ c (n) = (c 1 (n) , e 2 (n) , . . . , c n (n))

e (1) = (e 1 (1) , e 2 (1) , . . . , e n (1)) e (2) = (e 1 (2) , e 2 (2) , . . . , e n (2)) ⋮ e (n) = (e 1 (n) , e 2 (n) , . . . , e n (n))

Aceste sisteme sunt, de asemenea, bazele unui spațiu dat.

Fie c ~ 1 (1) , c ~ 2 (1) , . . . , c ~ n (1) - coordonatele vectorului c (1) în baza e (1) , e (2) , . . . , e (3) , atunci relația de coordonate va fi dată de un sistem de ecuații liniare:

c 1 (1) = c ~ 1 (1) e 1 (1) + c ~ 2 (1) e 1 (2) + . . . + c ~ n (1) e 1 (n) c 2 (1) = c ~ 1 (1) e 2 (1) + c ~ 2 (1) e 2 (2) + . . . + c ~ n (1) e 2 (n) ⋮ c n (1) = c ~ 1 (1) e n (1) + c ~ 2 (1) e n (2) + . . . + c ~ n (1) e n (n)

Sistemul poate fi reprezentat ca o matrice după cum urmează:

(c 1 (1) , c 2 (1) , . . . , c n (1)) = (c ~ 1 (1) , c ~ 2 (1) , . . . , c ~ n (1)) e 1 (1) e 2 (1) … e n (1) e 1 (2) e 2 (2) … e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) … e n (n)

Să facem aceeași intrare pentru vectorul c (2) prin analogie:

(c 1 (2) , c 2 (2) , . . . , c n (2)) = (c ~ 1 (2) , c ~ 2 (2) , . . . , c ~ n (2)) e 1 (1) e 2 (1) … e n (1) e 1 (2) e 2 (2) … e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) … e n (n)

(c 1 (n) , c 2 (n) , . . . , c n (n)) = (c ~ 1 (n) , c ~ 2 (n) , . . . , c ~ n (n)) e 1 (1) e 2 (1) … e n (1) e 1 (2) e 2 (2) … e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) … e n (n)

Să combinăm egalitățile matriceale într-o singură expresie:

c 1 (1) c 2 (1) ⋯ c n (1) c 1 (2) c 2 (2) ⋯ c n (2) ⋮ ⋮ ⋮ ⋮ c 1 (n) c 2 (n) ⋯ c n (n) = c ~ 1 (1) c ~ 2 (1) ⋯ c ~ n (1) c ~ 1 (2) c ~ 2 (2) ⋯ c ~ n (2) ⋮ ⋮ ⋮ ⋮ c ~ 1 (n) c ~ 2 (n) ⋯ c ~ n (n) e 1 (1) e 2 (1) ⋯ e n (1) e 1 (2) e 2 (2) ⋯ e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n ) e 2 (n) ⋯ e n (n)

Acesta va determina legătura dintre vectorii a două baze diferite.

Folosind același principiu, se pot exprima toți vectorii de bază e(1), e(2), . . . , e (3) prin baza c (1) , c (2) , . . . , c (n):

e 1 (1) e 2 (1) ⋯ e n (1) e 1 (2) e 2 (2) ⋯ e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) ⋯ e n (n) = e ~ 1 (1) e ~ 2 (1) ⋯ e ~ n (1) e ~ 1 (2) e ~ 2 (2) ⋯ e ~ n (2) ⋮ ⋮ ⋮ ⋮ e ~ 1 (n) e ~ 2 (n) ⋯ e ~ n (n) c 1 (1) c 2 (1) ⋯ c n (1) c 1 (2) c 2 (2) ⋯ c n (2) ⋮ ⋮ ⋮ ⋮ c 1 (n ) c 2 (n) ⋯ c n (n)

Să dăm următoarele definiții:

Definiția 5

Matricea c ~ 1 (1) c ~ 2 (1) ⋯ c ~ n (1) c ~ 1 (2) c ~ 2 (2) ⋯ c ~ n (2) ⋮ ⋮ ⋮ ⋮ c ~ 1 (n) c ~ 2 (n) ⋯ c ~ n (n) este matricea de tranziție de la baza e (1) , e (2) , . . . , e (3)

la baza c (1) , c (2) , . . . , c (n) .

Definiția 6

Matrice e ~ 1 (1) e ~ 2 (1) ⋯ e ~ n (1) e ~ 1 (2) e ~ 2 (2) ⋯ e ~ n (2) ⋮ ⋮ ⋮ ⋮ e ~ 1 (n) e ~ 2 (n) ⋯ e ~ n (n) este matricea de tranziție de la baza c (1) , c (2) , . . . , c(n)

la baza e (1) , e (2) , . . . , e (3) .

Din aceste egalităţi este evident că

c ~ 1 (1) c ~ 2 (1) ⋯ c ~ n (1) c ~ 1 (2) c ~ 2 (2) ⋯ c ~ n (2) ⋮ ⋮ ⋮ ⋮ c ~ 1 (n) c ~ 2 (n) ⋯ c ~ n (n) e ~ 1 (1) e ~ 2 (1) ⋯ e ~ n (1) e ~ 1 (2) e ~ 2 (2) ⋯ e ~ n (2) ⋮ ⋮ ⋮ ⋮ e ~ 1 (n) e ~ 2 (n) ⋯ e ~ n (n) = 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 1 e ~ 1 (1) e ~ 2 ( 1 ) ⋯ e ~ n (1) e ~ 1 (2) e ~ 2 (2) ⋯ e ~ n (2) ⋮ ⋮ ⋮ ⋮ e ~ 1 (n) e ~ 2 (n) ⋯ e ~ n (n ) · c ~ 1 (1) c ~ 2 (1) ⋯ c ~ n (1) c ~ 1 (2) c ~ 2 (2) ⋯ c ~ n (2) ⋮ ⋮ ⋮ ⋮ c ~ 1 (n) c ~ 2 (n) ⋯ c ~ n (n) = 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 1

acestea. matricele de tranziție sunt reciproce.

Să ne uităm la teorie folosind un exemplu specific.

Exemplul 7

Date inițiale: este necesar să se găsească matricea de tranziție de la bază

c (1) = (1 , 2 , 1) c (2) = (2 , 3 , 3) ​​​​c (3) = (3 , 7 , 1)

e (1) = (3 , 1 , 4) e (2) = (5 , 2 , 1) e (3) = (1 , 1 , - 6)

De asemenea, trebuie să indicați relația dintre coordonatele unui vector arbitrar x → în bazele date.

Soluţie

1. Fie T matricea de tranziție, atunci egalitatea va fi adevărată:

3 1 4 5 2 1 1 1 1 = T 1 2 1 2 3 3 3 7 1

Înmulțiți ambele părți ale egalității cu

1 2 1 2 3 3 3 7 1 - 1

si obtinem:

T = 3 1 4 5 2 1 1 1 - 6 1 2 1 2 3 3 3 7 1 - 1

2. Definiți matricea de tranziție:

T = 3 1 4 5 2 1 1 1 - 6 · 1 2 1 2 3 3 3 7 1 - 1 = = 3 1 4 5 2 1 1 1 - 6 · - 18 5 3 7 - 2 - 1 5 - 1 - 1 = - 27 9 4 - 71 20 12 - 41 9 8

3. Să definim relația dintre coordonatele vectorului x → :

Să presupunem că în baza c (1) , c (2) , . . . , c (n) vector x → are coordonatele x 1 , x 2 , x 3 , atunci:

x = (x 1 , x 2 , x 3) 1 2 1 2 3 3 3 7 1 ,

iar în baza e (1) , e (2) , . . . , e (3) are coordonatele x ~ 1, x ~ 2, x ~ 3, atunci:

x = (x ~ 1 , x ~ 2 , x ~ 3) 3 1 4 5 2 1 1 1 - 6

Deoarece Dacă părțile din stânga acestor egalități sunt egale, putem echivala și părțile din dreapta:

(x 1 , x 2 , x 3) · 1 2 1 2 3 3 3 7 1 = (x ~ 1 , x ~ 2 , x ~ 3) · 3 1 4 5 2 1 1 1 - 6

Înmulțiți ambele părți din dreapta cu

1 2 1 2 3 3 3 7 1 - 1

si obtinem:

(x 1 , x 2 , x 3) = (x ~ 1 , x ~ 2 , x ~ 3) · 3 1 4 5 2 1 1 1 - 6 · 1 2 1 2 3 3 3 7 1 - 1 ⇔ ⇔ ( x 1 , x 2 , x 3) = (x ~ 1 , x ~ 2 , x ~ 3) T ⇔ ⇔ (x 1 , x 2 , x 3) = (x ~ 1 , x ~ 2 , x ~ 3 ) · - 27 9 4 - 71 20 12 - 41 9 8

Pe cealaltă parte

(x ~ 1, x ~ 2, x ~ 3) = (x 1, x 2, x 3) · - 27 9 4 - 71 20 12 - 41 9 8

Ultimele egalități arată relația dintre coordonatele vectorului x → în ambele baze.

Răspuns: matricea de tranziție

27 9 4 - 71 20 12 - 41 9 8

Coordonatele vectorului x → în bazele date sunt legate prin relația:

(x 1 , x 2 , x 3) = (x ~ 1 , x ~ 2 , x ~ 3) · - 27 9 4 - 71 20 12 - 41 9 8

(x ~ 1, x ~ 2, x ~ 3) = (x 1, x 2, x 3) · - 27 9 4 - 71 20 12 - 41 9 8 - 1

Dacă observați o eroare în text, vă rugăm să o evidențiați și să apăsați Ctrl+Enter