Процесс Фишера — Тропша. Производство на основе синтез-газа синтетических моторных топлив по методу фишера-тропша. состав продуктов реакции в зависимости от применяемых катализаторов, температуры и давления. схема В качестве сырья вместо метана может быть

Процесс получения

Процесс Фишера – Тропша описывается следующим химическим уравнением

CO + 2 H 2 ----> --CH 2 -- + H 2 O

2 CO + H 2 ----> --CH 2 -- + CO 2 . Смесь монооксида углерода и водорода называется синтез-газ или сингаз. Получаемые углеводороды очищают для получения целевого продукта - синтетической нефти.

После войны взятые в плен германские учёные участвовали в операции «Скрепка» продолжая работать над синтетическими топливами в США в Бюро горной промышленности США.

Впервые синтез углеводородов из смеси СО и Н 2 был осуществлён в начале XX века : Сабатье и Сандеренсом был синтезирован метан , Е. И. Орловым - этилен . В 1913 г компания BASF взяла патент на получение смесей углеводородов и спиртов из синтез-газа над подщелоченными Co-Os катализаторами (в дальнейшем это направление вылилось в создание процесса синтеза метанола). В 1923 г немецкие химики Ф.Фишер и Г.Тропш, сотрудники компании Ruhrchemie, сообщили о получении кислородсодержащих продуктов из синтез-газа над Fe катализаторами, а в 1926 г - углеводородов. Первый промышленный реактор был пущен в Германии в 1935 г, использовался Co-Th осажденный катализатор. В 1930-40-е гг на основе технологии Фишера – Тропша было налажено производство синтетического бензина (когазин-I, или синтин) с октановым числом 40-55, синтетической высококачественной дизельной фракции (когазин-II) с цетановым числом 75-100 и твёрдого парафина. Сырьем для процесса служил уголь, из котоого газификацией получали синтез-газ, а из него углеводороды. К 1945 г в мире имелось 15 заводов синтеза Фишера – Тропша (в Германии, США, Китае и Японии) общей мощностью около 1 млн.т углеводородов в год. Они выпускали в основном синтетические моторные топлива и смазочные масла.

В годы после второй мировой войны синтезу ФТ уделяли большое внимание во всём мире, поскольку считалось, что запасы нефти подходят к концу, и надо искать ей замену. В 1950 г был пущен завод в Браунсвилле (Техас) на 360 тыс. т/г. В 1955 г южноафриканская компания Sasol построила собственное производство, существующее и развивающееся до сих пор. В Новочеркасске с 1952 работала установка мощностью около 50 тыс. т/г, использующая вывезенное из Германии оборудование. Сырьем служил сначала уголь донецкого бассейна, а затем природный газ. Немецкий Co-Th катализатор был со временем заменён на оригинальный, Co-Zr. На заводе была установлена колонна точной ректификации, так что в ассортимент продукции завода входили индивидуальные углеводороды высокой чистоты, в том числе α-олефины с нечетным углеродным номером. Установка работала на Новочеркасском заводе синтетических продуктов вплоть до 1990-х годов и была остановлена по экономическим причинам.

Все эти предприятия в значительной степени заимствовали опыт немецких химиков и инженеров, накопленный в 30-40-е годы.

Открытие обширных месторождений нефти в Аравии, Северном море, Нигерии, Аляске резко снизило интерес к синтезу ФТ. Почти все существующие заводы были закрыты, единственное крупное производство сохранилось в ЮАР. Активность в этой области возобновилась к 1990-м годам.

В 1990 г компания Exxon запустила опытную установку на 8 тыс. т/г с Co катализатором. В 1992 г южноафриканская компания Mossgas построила завод мощностью 900 тыс. т/г. В отличие от технологии Sasol, в качестве сырья здесь использовался природный газ с шельфового месторождения. В 1993 году компания Shell запустила завод в Бинтулу (Малайзия) мощностью 500 тыс. т/г, используя Co-Zr катализатор и оригинальную технологию «средних дистиллятов». Сырьем служит синтез-газ, получаемый парциальным окислением местного природного газа. В настоящее время Shell строит завод по той же технологии, но на порядок большей мощности в Катаре. Свои проекты в области синтеза ФТ разной степени проработки имеют также компании Chevron , Conoco , , ENI , Statoil , Rentech, Syntroleum и другие.

Научные основы процесса

Синтез ФТ можно рассматривать как восстановительную олигомеризацию оксида углерода:

nCO + (2n+1)H 2 → C n H 2n+2 + nН 2 О

nCO + 2nH 2 → C n H 2n + nН 2 О

Тепловой эффект значителен, 165 кДж/моль СО.

Катализаторами служат металлы VIII группы: наиболее активен Ru, затем Co, Fe, Ni. Для увеличения поверхности их часто наносят на пористые носители, так силикагель и глинозём. В промышленности нашли применение только Fe и Co. Рутений слишком дорог, кроме того, его запасы на Земле слишком малы для использования в качестве катализатора в многотоннажных процессах. На никелевых катализаторах при атмосферном давлении образуется в основном метан (n=1), при повышении же давления никель образует летучий карбонил и вымывается из реактора.

Побочными реакциями синтеза углеводородов из СО и Н 2 являются:

  • гидрирование оксида углерода до метана : СО + 3Н 2 → СН 4 + Н 2 О + 214 кДж/моль
  • реакция Белла – Будуара (диспропорционирование СО): 2СО → СО 2 + С
  • равновесие водяного газа: СО + Н 2 О ↔ СО 2 + Н 2

Последняя реакция имеет особое значение для катализаторов на основе железа, на кобальте она почти не протекает. На железных катализаторах, кроме того в значительных количествах образуются кислородсодержащие соединения - спирты и карбоновые кислоты.

Типичными условиями проведения процесса являются: давление от 1 атм (для Co катализаторов) до 30 атм, температура 190-240 °C (низкотемпературный вариант, для Co и Fe катализаторов) или 320-350 °C (высокотемпературный вариант, для Fe).

Механизм реакции, несмотря на десятилетия его изучения, в деталях остаётся неясен. Впрочем, эта ситуация типична для гетерогенного катализа.

Термодинамические закономерности для продуктов синтеза ФТ таковы:

  1. Возможно образование из СО и H 2 углеводородов любой молекулярной массы, вида и строения кроме ацетилена .
  2. Вероятность образования углеводородов уменьшается в ряду: метан > другие алканы > алкены . Вероятность образования нормальных алканов уменьшается, а нормальных алкенов повышается с увеличением длины цепи.
  3. Повышение общего давления в системе способствует образованию более тяжелых продуктов, а увеличение парциального давления водорода в синтез-газе благоприятствует образованию алканов.

Реальный состав продуктов синтеза углеводородов из СО и Н 2 существенно отличается от равновесного. В большинстве случаев распределение продуктов по молекулярной массе в стационарных условиях описывается формулой p(n) = n(1-α)²α n-1 , где p(n) - массовая доля углеводорода с углеродным номером n, α = k 1 /(k 1 +k 2), k 1 , k 2 - константы скорости роста и обрыва цепи, соответственно. Это т. н. распределение Андерсона – Шульца – Флори (ASF distribution). Метан (n=1) всегда присутствует в большем количестве, чем предписывается распределением ASF, поскольку образуется независимо по реакции прямого гидрирования. Величина α снижается с ростом температуры и, как правило, возрастает с ростом давления. Если в реакции образуются продукты разных гомологических рядов (парафины, олефины, спирты), то распределение для каждого из них может иметь свою величину α. Распределение ASF накладывает ограничения на максимальную селективность по любому углеводороду или узкой фракции. Это вторая, после теплосъема, проблема синтеза ФТ.

Использование

В настоящее время две компании коммерчески используют свои технологии, основанные на процессе Фишера – Тропша. Shell в Бинтулу, Малазия , использует природный газ в качестве сырья и производит, преимущественно, малосернистое дизельное топливо . Sasol в Южной Африке использует уголь в качестве сырья для производства разнообразных товарных продуктов из синтетической нефти. Процесс и сегодня используется в ЮАР для производства большей части дизельного топлива страны из угля компанией Sasol. Процесс использовался в ЮАР для удовлетворения потребностей в энергии во время изоляции при режиме апартеида . Внимание к этому процессу возобновилось в процессе поиска путей получения малосернистых дизельных топлив для уменьшения наносимого дизельными двигателями вреда окружающей среде. Маленькая американская компания Rentech в настоящее время сфокусировалась на преобразовании заводов по производству азотистых удобрений от использования в качестве сырья природного газа к использованию угля или кокса и жидких углеводородов в качестве побочного продукта.

В сентябре 2005 губернатор Эдвард Ренделл заявил о создании предприятия Waste Management and Processors Inc. - использующее технологии, лицензированные у Shell и Sasol. Будет построена фабрика, использующая синтез Фишера – Тропша для переработки так называемого бросового углерода (остатков от угледобычи) в малосернистое дизельное топливо на участке около города Mahanoy на северо-западе Филадельфии . Штат Пенсильвания взял на себя обязательство покупать значительный процент продукции завода и, вместе с Департаментом энергетики США (DoE), предложил более 140 миллионов долларов налоговых льгот. Прочие добывающие уголь штаты также разрабатывают подобные планы. Губернатор штата Монтана Бриан Швейцер (Brian Schweitzer) предложил построить завод, который будет использовать процесс Фишера – Тропша для превращения угольных запасов штата в топливо, чтобы уменьшить зависимость США от импорта нефти .

В начале 2006 года в США рассматривались проекты строительства 9 заводов по непрямому сжижению угля суммарной мощностью 90 – 250 тыс. баррелей в день.

Китай планирует инвестировать 15 млрд долл. до 2010-2015 гг. в строительство заводов по производству синтетического топлива из угля. Национальная Комиссия Развития и Реформ (NDRC) заявила, что суммарная мощность заводов по сжижению угля достигнет 16 млн тонн синтетического топлива в год, что составляет 5 % от потребления нефти в 2005 году и 10 % импорта нефти.

Технологии переработки угля в жидкое топливо порождают множество вопросов со стороны экологов. Наиболее серьёзной является проблема выбросов углекислого газа. Последние работы Национальной лаборатории по возобновляемым источникам энергии США (National Renewable Energy Laboratory) показали, что в полном цикле выбросы парниковых газов для произведённых из каменного угля синтетических топлив примерно вдвое выше своего основанного на бензине эквивалента. Выбросы прочих загрязнителей также сильно увеличились, тем не менее, многие из них могут быть собраны в процессе производства. Захоронение углерода было предложено в качестве способа уменьшения выбросов оксида углерода. Закачка C O 2 в нефтяные пласты позволит увеличить добычу нефти и увеличить срок службы месторождений на 20-25 лет, однако использование данной технологии возможно лишь при устойчивых нефтяных ценах выше 50-55 долл. за баррель. Важной проблемой при производстве синтетического топлива является и высокое потребление воды, уровень которого составляет от 5 до 7 галлонов на каждый галлон полученного топлива.

\mathsf{CO + 2H_2 \rightarrow \text{-}CH_2\text{-} + H_2O} \mathsf{2CO + H_2 \rightarrow \text{-}CH_2\text{-} + CO_2}

Смесь монооксида углерода и водорода называется синтез-газ или сингаз, также применяется термин «водяной газ».

Смесь получаемых углеводородов очищают для получения целевого продукта - синтетического бензина. Получение более тяжелых топлив методом Фишера - Тропша экономически невыгодно из-за быстрого отравления катализатора .

После войны взятые в плен германские учёные участвовали в операции «Скрепка», продолжая работать над синтетическими топливами в Бюро горной промышленности США.

Впервые синтез углеводородов из смеси СО и Н 2 был осуществлён в начале XX века : Сабатье и Сандеренсом был синтезирован метан , Е. И. Орловым - этилен . В 1913 г компания BASF взяла патент на получение смесей углеводородов и спиртов из синтез-газа над подщелоченными Co-Os катализаторами (в дальнейшем это направление вылилось в создание процесса синтеза метанола). В 1923 г немецкие химики Ф. Фишер и Г. Тропш, сотрудники компании Ruhrchemie, сообщили о получении кислородсодержащих продуктов из синтез-газа над Fe катализаторами, а в 1926 г - углеводородов. Первый промышленный реактор был пущен в Германии в 1935 г, использовался Co-Th осажденный катализатор. В 1930-40-е гг на основе технологии Фишера - Тропша было налажено производство синтетического бензина (когазин-I, или синтин) с октановым числом 40-55, синтетической высококачественной дизельной фракции (когазин-II) с цетановым числом 75-100 и твёрдого парафина. Сырьём для процесса служил уголь, из которого газификацией получали синтез-газ, а из него углеводороды. К 1945 г в мире имелось 15 заводов синтеза Фишера - Тропша (в Германии, США, Китае и Японии) общей мощностью около 1 млн т углеводородов в год. Они выпускали в основном синтетические моторные топлива и смазочные масла.

В годы после второй мировой войны синтезу ФТ уделяли большое внимание во всём мире, поскольку считалось, что запасы нефти подходят к концу, и надо искать ей замену. В 1950 г был пущен завод в Браунсвилле (Техас) на 360 тыс. т/г. В 1955 г южноафриканская компания Sasol построила собственное производство, существующее и развивающееся до сих пор. В Новочеркасске с 1952 работала установка мощностью около 50 тыс. т/г, использующая вывезенное из Германии оборудование. Сырьём служил сначала уголь донецкого бассейна, а затем природный газ. Немецкий Co-Th катализатор был со временем заменён на оригинальный, Co-Zr. На заводе была установлена колонна точной ректификации, так что в ассортимент продукции завода входили индивидуальные углеводороды высокой чистоты, в том числе α-олефины с нечетным углеродным номером. Установка работала на Новочеркасском заводе синтетических продуктов вплоть до 1990-х годов и была остановлена по экономическим причинам.

Все эти предприятия в значительной степени заимствовали опыт немецких химиков и инженеров, накопленный в 30-40-е годы.

Открытие обширных месторождений нефти в Аравии, Северном море, Нигерии, Аляске резко снизило интерес к синтезу ФТ. Почти все существующие заводы были закрыты, единственное крупное производство сохранилось в ЮАР. Активность в этой области возобновилась к 1990-м годам.

В 1990 г компания Exxon запустила опытную установку на 8 тыс. т/г с Co катализатором. В 1992 г южноафриканская компания Mossgas построила завод мощностью 900 тыс. т/г. В отличие от технологии Sasol, в качестве сырья здесь использовался природный газ с шельфового месторождения. В 1993 году компания Shell запустила завод в Бинтулу (Малайзия) мощностью 500 тыс. т/г, используя Co-Zr катализатор и оригинальную технологию «средних дистиллятов». Сырьём служит синтез-газ, получаемый парциальным окислением местного природного газа. В настоящее время Shell строит завод по той же технологии, но на порядок большей мощности в Катаре. Свои проекты в области синтеза ФТ разной степени проработки имеют также компании Chevron , Conoco , , ENI , Statoil , Rentech , Syntroleum и другие.

Научные основы процесса

Синтез ФТ можно рассматривать как восстановительную олигомеризацию оксида углерода:

\mathsf{nCO + (2n+1)H_2 \rightarrow C_nH_{2n+2} + nH_2O} \mathsf{nCO + 2nH_2 \rightarrow C_nH_{2n} + nH_2O}

Типичными условиями проведения процесса являются: давление от 1 атм (для Co катализаторов) до 30 атм, температура 190-240 °C (низкотемпературный вариант синтеза, для Co и Fe катализаторов) или 320-350 °C (высокотемпературный вариант, для Fe).

Механизм реакции, несмотря на десятилетия его изучения, в деталях до сих пор остаётся неясен. Впрочем, эта слабая изученность реакций типична для гетерогенного катализа.

Термодинамические закономерности для продуктов синтеза Фишера - Тропша таковы:

  1. Возможно образование из СО и H 2 углеводородов любой молекулярной массы, вида и строения кроме ацетилена , образование которого энергетически невыгодно.
  2. Вероятность образования углеводородов уменьшается в ряду: метан > другие алканы > алкены . Вероятность образования нормальных алканов уменьшается, а нормальных алкенов повышается с увеличением длины цепи.
  3. Повышение общего давления в системе способствует образованию более тяжелых продуктов, а увеличение парциального давления водорода в синтез-газе благоприятствует образованию алканов.

Реальный состав продуктов синтеза углеводородов из СО и Н 2 существенно отличается от равновесного. В большинстве случаев распределение продуктов по молекулярной массе в стационарных условиях описывается формулой p(n) = n(1-α)²α n-1 , где p(n) - массовая доля углеводорода с углеродным номером n, α = k 1 /(k 1 +k 2), k 1 , k 2 - константы скорости роста и обрыва цепи, соответственно. Это т. н. распределение Андерсона - Шульца - Флори (ASF distribution). Метан (n=1) всегда присутствует в большем количестве, чем предписывается распределением ASF, поскольку образуется независимо по реакции прямого гидрирования. Величина α снижается с ростом температуры и, как правило, возрастает с ростом давления. Если в реакции образуются продукты разных гомологических рядов (парафины , олефины , спирты), то распределение для каждого из них может иметь свою величину α. Распределение ASF накладывает ограничения на максимальную селективность по любому углеводороду или узкой фракции. Это вторая проблема после проблемы отведения тепла реакции в синтезе Фишера - Тропша.

Синтезы на основе оксида углерода и водорода .

Процесс Катализатор Носитель катализатора Температура, °С Давление, МПа Продукт
Синтез метана Ni ThO 2 или MgO 250-500 0,1 Метан
Синтез высших углеводородов Co, Ni ThO 2 , MgO, ZrO 2 150-200 0,1-1 Смесь парафинов и олефинов с длиной углеродной цепи С1-С100
Синтез высших углеводородов и кислородсодержащих соединений Fe Cu, NaOH (KOH), Al 2 O 3 , SiO 2 200-230 0,1-3 Преимущественно парафины и олефины в смеси с кислородсодержащими соединениями
Синтез парафинов Со TiO 2 , ZrO 2 , ThO 2 , MgO 190-200 1 Преимущественно твердые парафины с температурой плавления 70-98°С
Ru MgO 180-200 10-100 Высокомолекулярные парафины
Изосинтез ZrO 2 , ThO 2 , Al 2 O 3 K 2 CO 3 400-450 10 Парафины и олефины преимущественно изостроения
ThO 2 - 350-500 10-100 Изопарафины и ароматические углеводороды
Синтез метанола ZnO, Cr 2 O 3 , CuO - 200-400 5-30 Метанол
Синтез высших спиртов Fe, Fe-Cr, Zn-Cr Al 2 O 3 , NaOH 180-220, 380-490 1-3, 15-25 Метанол и высшие спирты

Использование

Во времена Третьего Рейха в Германии был построен ряд предприятий по производству энергоносителей из угля, залежи которого в больших количествах находятся на территории страны. В основном производство базировалось на разработанном в 1913 году процессе , для процесса Фишера - Тропша были выделены менее значительные мощности. До конца Второй мировой войны было реализовано в общем мощностей для производства до 4,275 миллионов тонн в год с помощью первого и до 1,55 тонн в год с помощью последнего процесса. Обе отрасли оказались неконкурентоспособными по сравнению с нефтедобывающей и были остановлены по окончании войны. Исследования возобновились во время нефтяного кризиса в 70-х годах 20-го века. Возникло предприятие в городе Боттроп, однако в конце 80-х цена за нефть упала до 20 долларов за баррель и из-за нерентабельности пришлось вновь остановить разработки .

В настоящее время две компании коммерчески используют свои технологии, основанные на процессе Фишера - Тропша. Shell в Бинтулу, Малайзия , использует природный газ в качестве сырья и производит, преимущественно, малосернистое дизельное топливо . В 1955 году в г. Сасолбурге (ЮАР) фирма Sasol ввела в строй первый завод по выпуску жидкого топлива из угля методом Фишера-Тропша. Уголь поступает непосредственно из угольных копей по транспортеру для получения синтез-газа. Затем были построены заводы Sasol-2 и Sasol-3. Процесс использовался для удовлетворения потребностей в энергии во время изоляции при режиме апартеида . Внимание к этому процессу возобновилось в процессе поиска путей получения малосернистых дизельных топлив для уменьшения наносимого дизельными двигателями вреда окружающей среде. В настоящее время в ЮАР производят этим методом 5-6 млн т/год углеводородов. Однако процесс является убыточным и дотируется государством как национальное достояние . Производство в ЮАР ориентируется не столько на производство моторного топлива, сколько на получение отдельных более ценных фракций, например, низших олефинов.

Маленькая американская компания Rentech в настоящее время сосредоточилась на преобразовании заводов по производству азотистых удобрений от использования в качестве сырья природного газа к использованию угля или кокса и жидких углеводородов в качестве побочного продукта.

В сентябре 2005 губернатор Эдвард Ренделл заявил о создании предприятия Waste Management and Processors Inc. - использующее технологии, лицензированные у Shell и Sasol. Будет построена фабрика, использующая синтез Фишера - Тропша для переработки так называемого бросового углерода (остатков от угледобычи) в малосернистое дизельное топливо на участке около города Mahanoy на северо-западе Филадельфии . Штат Пенсильвания взял на себя обязательство покупать значительный процент продукции завода и, вместе с Департаментом энергетики США (DoE), предложил более 140 миллионов долларов налоговых льгот. Прочие добывающие уголь штаты также разрабатывают подобные планы. Губернатор штата Монтана Бриан Швейцер (Brian Schweitzer) предложил построить завод, который будет использовать процесс Фишера - Тропша для превращения угольных запасов штата в топливо, чтобы уменьшить зависимость США от импорта нефти .

В начале 2006 года в США рассматривались проекты строительства 9 заводов по непрямому сжижению угля суммарной мощностью 90 - 250 тыс. баррелей в день.

Напишите отзыв о статье "Процесс Фишера - Тропша"

Примечания

Отрывок, характеризующий Процесс Фишера - Тропша

Не обращая на Балашева внимания, унтер офицер стал говорить с товарищами о своем полковом деле и не глядел на русского генерала.
Необычайно странно было Балашеву, после близости к высшей власти и могуществу, после разговора три часа тому назад с государем и вообще привыкшему по своей службе к почестям, видеть тут, на русской земле, это враждебное и главное – непочтительное отношение к себе грубой силы.
Солнце только начинало подниматься из за туч; в воздухе было свежо и росисто. По дороге из деревни выгоняли стадо. В полях один за одним, как пузырьки в воде, вспырскивали с чувыканьем жаворонки.
Балашев оглядывался вокруг себя, ожидая приезда офицера из деревни. Русские казаки, и трубач, и французские гусары молча изредка глядели друг на друга.
Французский гусарский полковник, видимо, только что с постели, выехал из деревни на красивой сытой серой лошади, сопутствуемый двумя гусарами. На офицере, на солдатах и на их лошадях был вид довольства и щегольства.
Это было то первое время кампании, когда войска еще находились в исправности, почти равной смотровой, мирной деятельности, только с оттенком нарядной воинственности в одежде и с нравственным оттенком того веселья и предприимчивости, которые всегда сопутствуют началам кампаний.
Французский полковник с трудом удерживал зевоту, но был учтив и, видимо, понимал все значение Балашева. Он провел его мимо своих солдат за цепь и сообщил, что желание его быть представленну императору будет, вероятно, тотчас же исполнено, так как императорская квартира, сколько он знает, находится недалеко.
Они проехали деревню Рыконты, мимо французских гусарских коновязей, часовых и солдат, отдававших честь своему полковнику и с любопытством осматривавших русский мундир, и выехали на другую сторону села. По словам полковника, в двух километрах был начальник дивизии, который примет Балашева и проводит его по назначению.
Солнце уже поднялось и весело блестело на яркой зелени.
Только что они выехали за корчму на гору, как навстречу им из под горы показалась кучка всадников, впереди которой на вороной лошади с блестящею на солнце сбруей ехал высокий ростом человек в шляпе с перьями и черными, завитыми по плечи волосами, в красной мантии и с длинными ногами, выпяченными вперед, как ездят французы. Человек этот поехал галопом навстречу Балашеву, блестя и развеваясь на ярком июньском солнце своими перьями, каменьями и золотыми галунами.
Балашев уже был на расстоянии двух лошадей от скачущего ему навстречу с торжественно театральным лицом всадника в браслетах, перьях, ожерельях и золоте, когда Юльнер, французский полковник, почтительно прошептал: «Le roi de Naples». [Король Неаполитанский.] Действительно, это был Мюрат, называемый теперь неаполитанским королем. Хотя и было совершенно непонятно, почему он был неаполитанский король, но его называли так, и он сам был убежден в этом и потому имел более торжественный и важный вид, чем прежде. Он так был уверен в том, что он действительно неаполитанский король, что, когда накануне отъезда из Неаполя, во время его прогулки с женою по улицам Неаполя, несколько итальянцев прокричали ему: «Viva il re!», [Да здравствует король! (итал.) ] он с грустной улыбкой повернулся к супруге и сказал: «Les malheureux, ils ne savent pas que je les quitte demain! [Несчастные, они не знают, что я их завтра покидаю!]
Но несмотря на то, что он твердо верил в то, что он был неаполитанский король, и что он сожалел о горести своих покидаемых им подданных, в последнее время, после того как ему ведено было опять поступить на службу, и особенно после свидания с Наполеоном в Данциге, когда августейший шурин сказал ему: «Je vous ai fait Roi pour regner a maniere, mais pas a la votre», [Я вас сделал королем для того, чтобы царствовать не по своему, а по моему.] – он весело принялся за знакомое ему дело и, как разъевшийся, но не зажиревший, годный на службу конь, почуяв себя в упряжке, заиграл в оглоблях и, разрядившись как можно пестрее и дороже, веселый и довольный, скакал, сам не зная куда и зачем, по дорогам Польши.
Увидав русского генерала, он по королевски, торжественно, откинул назад голову с завитыми по плечи волосами и вопросительно поглядел на французского полковника. Полковник почтительно передал его величеству значение Балашева, фамилию которого он не мог выговорить.
– De Bal macheve! – сказал король (своей решительностью превозмогая трудность, представлявшуюся полковнику), – charme de faire votre connaissance, general, [очень приятно познакомиться с вами, генерал] – прибавил он с королевски милостивым жестом. Как только король начал говорить громко и быстро, все королевское достоинство мгновенно оставило его, и он, сам не замечая, перешел в свойственный ему тон добродушной фамильярности. Он положил свою руку на холку лошади Балашева.
– Eh, bien, general, tout est a la guerre, a ce qu"il parait, [Ну что ж, генерал, дело, кажется, идет к войне,] – сказал он, как будто сожалея об обстоятельстве, о котором он не мог судить.
– Sire, – отвечал Балашев. – l"Empereur mon maitre ne desire point la guerre, et comme Votre Majeste le voit, – говорил Балашев, во всех падежах употребляя Votre Majeste, [Государь император русский не желает ее, как ваше величество изволите видеть… ваше величество.] с неизбежной аффектацией учащения титула, обращаясь к лицу, для которого титул этот еще новость.
Лицо Мюрата сияло глупым довольством в то время, как он слушал monsieur de Balachoff. Но royaute oblige: [королевское звание имеет свои обязанности:] он чувствовал необходимость переговорить с посланником Александра о государственных делах, как король и союзник. Он слез с лошади и, взяв под руку Балашева и отойдя на несколько шагов от почтительно дожидавшейся свиты, стал ходить с ним взад и вперед, стараясь говорить значительно. Он упомянул о том, что император Наполеон оскорблен требованиями вывода войск из Пруссии, в особенности теперь, когда это требование сделалось всем известно и когда этим оскорблено достоинство Франции. Балашев сказал, что в требовании этом нет ничего оскорбительного, потому что… Мюрат перебил его:
– Так вы считаете зачинщиком не императора Александра? – сказал он неожиданно с добродушно глупой улыбкой.
Балашев сказал, почему он действительно полагал, что начинателем войны был Наполеон.
– Eh, mon cher general, – опять перебил его Мюрат, – je desire de tout mon c?ur que les Empereurs s"arrangent entre eux, et que la guerre commencee malgre moi se termine le plutot possible, [Ах, любезный генерал, я желаю от всей души, чтобы императоры покончили дело между собою и чтобы война, начатая против моей воли, окончилась как можно скорее.] – сказал он тоном разговора слуг, которые желают остаться добрыми приятелями, несмотря на ссору между господами. И он перешел к расспросам о великом князе, о его здоровье и о воспоминаниях весело и забавно проведенного с ним времени в Неаполе. Потом, как будто вдруг вспомнив о своем королевском достоинстве, Мюрат торжественно выпрямился, стал в ту же позу, в которой он стоял на коронации, и, помахивая правой рукой, сказал: – Je ne vous retiens plus, general; je souhaite le succes de vorte mission, [Я вас не задерживаю более, генерал; желаю успеха вашему посольству,] – и, развеваясь красной шитой мантией и перьями и блестя драгоценностями, он пошел к свите, почтительно ожидавшей его.
Балашев поехал дальше, по словам Мюрата предполагая весьма скоро быть представленным самому Наполеону. Но вместо скорой встречи с Наполеоном, часовые пехотного корпуса Даву опять так же задержали его у следующего селения, как и в передовой цепи, и вызванный адъютант командира корпуса проводил его в деревню к маршалу Даву.

Даву был Аракчеев императора Наполеона – Аракчеев не трус, но столь же исправный, жестокий и не умеющий выражать свою преданность иначе как жестокостью.
В механизме государственного организма нужны эти люди, как нужны волки в организме природы, и они всегда есть, всегда являются и держатся, как ни несообразно кажется их присутствие и близость к главе правительства. Только этой необходимостью можно объяснить то, как мог жестокий, лично выдиравший усы гренадерам и не могший по слабости нерв переносить опасность, необразованный, непридворный Аракчеев держаться в такой силе при рыцарски благородном и нежном характере Александра.
Балашев застал маршала Даву в сарае крестьянскои избы, сидящего на бочонке и занятого письменными работами (он поверял счеты). Адъютант стоял подле него. Возможно было найти лучшее помещение, но маршал Даву был один из тех людей, которые нарочно ставят себя в самые мрачные условия жизни, для того чтобы иметь право быть мрачными. Они для того же всегда поспешно и упорно заняты. «Где тут думать о счастливой стороне человеческой жизни, когда, вы видите, я на бочке сижу в грязном сарае и работаю», – говорило выражение его лица. Главное удовольствие и потребность этих людей состоит в том, чтобы, встретив оживление жизни, бросить этому оживлению в глаза спою мрачную, упорную деятельность. Это удовольствие доставил себе Даву, когда к нему ввели Балашева. Он еще более углубился в свою работу, когда вошел русский генерал, и, взглянув через очки на оживленное, под впечатлением прекрасного утра и беседы с Мюратом, лицо Балашева, не встал, не пошевелился даже, а еще больше нахмурился и злобно усмехнулся.
Заметив на лице Балашева произведенное этим приемом неприятное впечатление, Даву поднял голову и холодно спросил, что ему нужно.
Предполагая, что такой прием мог быть сделан ему только потому, что Даву не знает, что он генерал адъютант императора Александра и даже представитель его перед Наполеоном, Балашев поспешил сообщить свое звание и назначение. В противность ожидания его, Даву, выслушав Балашева, стал еще суровее и грубее.
– Где же ваш пакет? – сказал он. – Donnez le moi, ije l"enverrai a l"Empereur. [Дайте мне его, я пошлю императору.]
Балашев сказал, что он имеет приказание лично передать пакет самому императору.
– Приказания вашего императора исполняются в вашей армии, а здесь, – сказал Даву, – вы должны делать то, что вам говорят.
И как будто для того чтобы еще больше дать почувствовать русскому генералу его зависимость от грубой силы, Даву послал адъютанта за дежурным.
Балашев вынул пакет, заключавший письмо государя, и положил его на стол (стол, состоявший из двери, на которой торчали оторванные петли, положенной на два бочонка). Даву взял конверт и прочел надпись.
– Вы совершенно вправе оказывать или не оказывать мне уважение, – сказал Балашев. – Но позвольте вам заметить, что я имею честь носить звание генерал адъютанта его величества…
Даву взглянул на него молча, и некоторое волнение и смущение, выразившиеся на лице Балашева, видимо, доставили ему удовольствие.
– Вам будет оказано должное, – сказал он и, положив конверт в карман, вышел из сарая.
Через минуту вошел адъютант маршала господин де Кастре и провел Балашева в приготовленное для него помещение.
Балашев обедал в этот день с маршалом в том же сарае, на той же доске на бочках.
На другой день Даву выехал рано утром и, пригласив к себе Балашева, внушительно сказал ему, что он просит его оставаться здесь, подвигаться вместе с багажами, ежели они будут иметь на то приказания, и не разговаривать ни с кем, кроме как с господином де Кастро.
После четырехдневного уединения, скуки, сознания подвластности и ничтожества, особенно ощутительного после той среды могущества, в которой он так недавно находился, после нескольких переходов вместе с багажами маршала, с французскими войсками, занимавшими всю местность, Балашев привезен был в Вильну, занятую теперь французами, в ту же заставу, на которой он выехал четыре дня тому назад.
На другой день императорский камергер, monsieur de Turenne, приехал к Балашеву и передал ему желание императора Наполеона удостоить его аудиенции.
Четыре дня тому назад у того дома, к которому подвезли Балашева, стояли Преображенского полка часовые, теперь же стояли два французских гренадера в раскрытых на груди синих мундирах и в мохнатых шапках, конвой гусаров и улан и блестящая свита адъютантов, пажей и генералов, ожидавших выхода Наполеона вокруг стоявшей у крыльца верховой лошади и его мамелюка Рустава. Наполеон принимал Балашева в том самом доме в Вильве, из которого отправлял его Александр.

Несмотря на привычку Балашева к придворной торжественности, роскошь и пышность двора императора Наполеона поразили его.
Граф Тюрен ввел его в большую приемную, где дожидалось много генералов, камергеров и польских магнатов, из которых многих Балашев видал при дворе русского императора. Дюрок сказал, что император Наполеон примет русского генерала перед своей прогулкой.
После нескольких минут ожидания дежурный камергер вышел в большую приемную и, учтиво поклонившись Балашеву, пригласил его идти за собой.
Балашев вошел в маленькую приемную, из которой была одна дверь в кабинет, в тот самый кабинет, из которого отправлял его русский император. Балашев простоял один минуты две, ожидая. За дверью послышались поспешные шаги. Быстро отворились обе половинки двери, камергер, отворивший, почтительно остановился, ожидая, все затихло, и из кабинета зазвучали другие, твердые, решительные шаги: это был Наполеон. Он только что окончил свой туалет для верховой езды. Он был в синем мундире, раскрытом над белым жилетом, спускавшимся на круглый живот, в белых лосинах, обтягивающих жирные ляжки коротких ног, и в ботфортах. Короткие волоса его, очевидно, только что были причесаны, но одна прядь волос спускалась книзу над серединой широкого лба. Белая пухлая шея его резко выступала из за черного воротника мундира; от него пахло одеколоном. На моложавом полном лице его с выступающим подбородком было выражение милостивого и величественного императорского приветствия.
Он вышел, быстро подрагивая на каждом шагу и откинув несколько назад голову. Вся его потолстевшая, короткая фигура с широкими толстыми плечами и невольно выставленным вперед животом и грудью имела тот представительный, осанистый вид, который имеют в холе живущие сорокалетние люди. Кроме того, видно было, что он в этот день находился в самом хорошем расположении духа.
Он кивнул головою, отвечая на низкий и почтительный поклон Балашева, и, подойдя к нему, тотчас же стал говорить как человек, дорожащий всякой минутой своего времени и не снисходящий до того, чтобы приготавливать свои речи, а уверенный в том, что он всегда скажет хорошо и что нужно сказать.
– Здравствуйте, генерал! – сказал он. – Я получил письмо императора Александра, которое вы доставили, и очень рад вас видеть. – Он взглянул в лицо Балашева своими большими глазами и тотчас же стал смотреть вперед мимо него.
Очевидно было, что его не интересовала нисколько личность Балашева. Видно было, что только то, что происходило в его душе, имело интерес для него. Все, что было вне его, не имело для него значения, потому что все в мире, как ему казалось, зависело только от его воли.
– Я не желаю и не желал войны, – сказал он, – но меня вынудили к ней. Я и теперь (он сказал это слово с ударением) готов принять все объяснения, которые вы можете дать мне. – И он ясно и коротко стал излагать причины своего неудовольствия против русского правительства.
Судя по умеренно спокойному и дружелюбному тону, с которым говорил французский император, Балашев был твердо убежден, что он желает мира и намерен вступить в переговоры.
– Sire! L"Empereur, mon maitre, [Ваше величество! Император, государь мой,] – начал Балашев давно приготовленную речь, когда Наполеон, окончив свою речь, вопросительно взглянул на русского посла; но взгляд устремленных на него глаз императора смутил его. «Вы смущены – оправьтесь», – как будто сказал Наполеон, с чуть заметной улыбкой оглядывая мундир и шпагу Балашева. Балашев оправился и начал говорить. Он сказал, что император Александр не считает достаточной причиной для войны требование паспортов Куракиным, что Куракин поступил так по своему произволу и без согласия на то государя, что император Александр не желает войны и что с Англией нет никаких сношений.
– Еще нет, – вставил Наполеон и, как будто боясь отдаться своему чувству, нахмурился и слегка кивнул головой, давая этим чувствовать Балашеву, что он может продолжать.
Высказав все, что ему было приказано, Балашев сказал, что император Александр желает мира, но не приступит к переговорам иначе, как с тем условием, чтобы… Тут Балашев замялся: он вспомнил те слова, которые император Александр не написал в письме, но которые непременно приказал вставить в рескрипт Салтыкову и которые приказал Балашеву передать Наполеону. Балашев помнил про эти слова: «пока ни один вооруженный неприятель не останется на земле русской», но какое то сложное чувство удержало его. Он не мог сказать этих слов, хотя и хотел это сделать. Он замялся и сказал: с условием, чтобы французские войска отступили за Неман.
Наполеон заметил смущение Балашева при высказывании последних слов; лицо его дрогнуло, левая икра ноги начала мерно дрожать. Не сходя с места, он голосом, более высоким и поспешным, чем прежде, начал говорить. Во время последующей речи Балашев, не раз опуская глаза, невольно наблюдал дрожанье икры в левой ноге Наполеона, которое тем более усиливалось, чем более он возвышал голос.
– Я желаю мира не менее императора Александра, – начал он. – Не я ли осьмнадцать месяцев делаю все, чтобы получить его? Я осьмнадцать месяцев жду объяснений. Но для того, чтобы начать переговоры, чего же требуют от меня? – сказал он, нахмурившись и делая энергически вопросительный жест своей маленькой белой и пухлой рукой.

Процесс получения углеводородов на основе оксида углерода и водорода на железных и кобальтовых катализаторах разработан в 1923 году Фишером и Тропшем.

Химизм процесса

Получение углеводородных смесей из оксида углерода и водорода представляет собой комплекс сложных параллельных и последовательных реакций. Первой стадией процесса является совместная хемосорбция оксида углерода и водорода на поверхности катализатора, в результате чего образуется первичный поверхностный комплекс. В результате дальнейшего ступенчатого присоединения углеводородных фрагментов происходит рост углеводородной цепи. Основные направления процесса можно представить схемой:

СО + Н 2 → C n H 2 n +2 + C n H 2 n + H 2 O + Q

CO + H 2 → C n H 2n+2 + CО 2 + Q

Таким образом в результате синтеза образуется смесь парафиновых и олефиновых углеводородов, воды и СО 2 .

Синтез Фишера-Тропша протекает в присутствии катализаторов, содержащих металлы VIII группы Периодической системы – никель, кобальт, железо с добавками оксидов некоторых других металлов (тория, магния, циркония, титана). Выход и состав продуктов реакции определяется видом катализатора и условиями проведения процесса. Реакция является экзотермической. Помимо образования углеводородов в процессе синтеза в небольших количествах получаются органические кислородсодержащие соединения, главным образом спирты С 1 -С 6 . Промышленные катализаторы современного процесса Фишера-Тропша часто состоят из железа, нанесенного на оксид алюминия, диоксид кремния или кизельгур, и содержат в качестве промоторов соли щелочных металлов.

Применяют также Со-катализаторы, в качестве носителей осажденных кобальтовых катализаторов применяют природные и синтетические алюмосиликаты и цеолиты. На кобальтовых катализаторах образуются смеси, состоящие преимущественно из парафиновых углеводородов нормального строения (80%) с примесью нормальных алкенов (15%) с числом атомов углерода 1-100 и небольшого количества разветвленных алканов, алкенов и кислородсодержащих соединений (5%). Процесс протекает при температуре 170-200 о С и давлении 0,1-1,0 МПа. В присутствии железных катализаторов синтезы углеводородов из оксида углерода и водорода осуществляются в более жестких условиях: температуре в реакторе 200-235 о С, давлении 3-4 МПа. В результате образуются углеводородные смеси с большим содержанием олефинов (до 50%) и кислородсодержащих соединений.

Одной из нежелательных побочных реакций является диспропорционирование оксида углерода:

2СО → C + CO 2

что приводит к отложению углерода на поверхности катализатора и часто является причиной дезактивации последнего.

Дизельное топливо можно получать как в ходе синтеза Фишера-Тропша непосредственно, так и в результате крекинга образующихся в процессе углеводородов выше С 19 и олигомеризации алкенов С 3 -С 8 . Бензины, получаемые на железных катализаторах, имеют лучшие моторные характеристики, чем бензины, производимые на кобальтовых катализаторах. Однако при применении кобальтовых катализаторов образуется много дорогостоящих высокомолекулярных восков, что улучшает экономические показатели процесса.

Основным недостатком ФТ- синтеза является его низкая селективность. Смесь продуктов, полученная этим методом, включает 25-30% метана, 15-20% углеводородов С 2 -С 4 и только 24-45% жидких углеводородов. Одной из важнейших проблем при совершенствовании процесса является организация переработки в топливные фракции или другие ценные продукты образующихся легких углеводородов. К недостаткам процесса следует также отнести дороговизну катализаторов, сложность их регенерации, низкую производительность.

Технологическое оформление процесса

В промышленности реализованы: технология в стационарном слое катализатора, в потоке взвешенного катализатора, в жидкой фазе с суспендированным катализатором.

Принципиальная технологическая схема высокопроизводительного синтеза Фишера-Тропша на железном катализаторе.

1 – реактор; 2 – мультициклон; 3 – теплообменник; 4 – конденсатор; 5 – сборник парафина; 6 – сборник высококипящих угледоводоров; 7 – сборник легких углеводородов; 8 – сборник реакционной воды.

Потоки: I – синтез-газ; II – питательная вода; III – пар; IV – циркулирующий газ; V – остаточный газ; VI – щелочь.

Исходный синтез-газ смешивают в соотношении 1:2,5 с циркулирующим газом, компримируют до 2,5 МПа и через теплообменник вводят в реактор в количестве 500-700 куб. м. на 1 куб м. катализатора в час. В реактор загружают 40 куб. м. железного катализатора. Катализатор работает непрерывно в течение 9-12 месяцев с постепенным повышением температуры с 220 до 250 о С, обеспечивая конверсию синтез-газа 65-73%. Производительность одного реактора – 250 т./сут. углеводородов С 2 и выше.

В реакторах этого типа получают в основном насыщенные углеводороды, в том числе и высокомолекулярные твердые парафины типа церезина.

Принципиальная технологическая схема синтеза Фишера-Тропша в газовой фазе в потоке взвешенного катализатора.

1 – подогреватель; 2 – реактор; 3 – холодильник; 4 – колонна-сепаратор; 5 – конденсатор; 6 – разделительная колонна; 7 – колонна для промывки бензина; 8 – колонна для промывки газа.

Потоки: I – синтез-газ; II – ввод свежего катализатора; III – суспензия катализатора; IV – циркулирующее масло; V – вода; VI – вода и водорастворимые продукты; VII – тяжелое масло; VIII – бензин; IX – отходящий газ.

Синтез-газ вводят в реактор вместе с катализатором. Синтез проводят при температуре 310-350 о С и давлении 2-3 МПа. Продукты реакции и катализатор поступают в колонну-сепаратор, оборудованную циклонами для отделения катализатора. Отвод тепла осуществляют при помощи двух холодильников, через которые циркулирует масло. Срок службы катализатора 42-45 суток.

Отличительной особенностью процесса в потоке взвешенного «увеличенного» катализатора является высокое содержание олефинов во фракции выше С 3 (60-85%).

В смесях, получаемых в реакторах со взвешенным слоем катализатора, может содержаться значительное количество ценных побочных продуктов – кислородсодержащих соединений (спирты, карбоновые кислоты, альдегиды, кетоны).

ПРОИЗВОДСТВО МЕТАНОЛА

Метанол является ценным крупнотоннажным продуктом, находящим широкое применение в различных отраслях промышленности.

Объем потребления метанола в мире непрерывно возрастает. В настоящее время его мировое производство превышает 20 млн. т/год.

Традиционным потребителем метанола является производство формальдегида (в первую очередь, его водного раствора - формалина), который получают окислительной конверсией метанола. На долю формальдегида приходится половина производимого метанола.

Потребителями метанола являются производства различных мономеров (например, метилметакрилата и диметилтерефталата), метилтретбутилового эфира (МТБЭ), метилгалогенидов, метиламинов, ионообменных смол, уксусной кислоты. Метанол также широко используется как растворитель и экстрагент.

Одной из новых областей применения метанола является ис­пользование его в качестве моторного топлива взамен ставшего дефицитным и весьма дорогим бензина.

Метанол либо добавляют к бензину в количестве до 5%, либо используют целиком вместо бензина. Однако метанол обладает более низкой теплотворной способностью и является весьма токсичным, что, вероятно, будет сдерживать его применение.

Метанол – ядовитая бесцветная жидкость со сладковатым запахом.

Метанол в числе других кислородсодержащих соединений впервые был получен из оксида углерода и водорода в 1913 г. Для этой цели использовали железные катализаторы, которые однако быстро покрывались углеродом и дезактивировались. Применение цинк-хромовых катализаторов позволило устранить этот недостаток. Было установлено, что оксид цинка не чувствителен к сере, соединения которой обычно содержатся в синтез-газе и отравляют металлические катализаторы.

Реакция образования метанола идет с выделением тепла и уменьшением объема, поэтому ей благоприятствуют низкие температуры и высокие давления. При синтезе метанола протекают следующие реакции:

СO+2H 2 → CH 3 OH –ΔН 25 = 110,8 кДж/моль (1)

СO+H 2 O → CO 2 +H 2 –ΔН 25 = 41 кДж/моль (2)

CO 2 +3H 2 → CH 3 OH+H 2 O –ΔН 25 = 60,4 кДж/моль (3)

С повышением температуры степень превращения СО заметно снижается.

Условия проведения реакции определяются катализатором. Если катализатор обладает такой высокой активностью, что уже при низкой температуре достигается высокая степень превращения СО, то синтез метанола можно осуществлять уже при давлении 5 МПа. В противном случае, то есть при применении менее активного катализатора, работающего при более высокой температуре, необходимо давление ~30 МПа. Катализаторы, обычно применяемые в промышленности, проявляют активность только при высоких температурах (360-380 о С), т.е. в условиях термодинамически неблагоприятных. В промышленности наибольшее распространение получили цинк-хромовые катализаторы, а в последние годы – медьсодержащие катализаторы, достаточно активные при температуре 220-270 о С.

При управлении селективностью синтеза метанола необходимо учитывать, что протекание этой реакции гораздо менее термически благоприятно, чем протекание таких побочных реакций, как образование углеводородов, высших спиртов, диметилового эфира. Эти реакции можно подавить варьированием состава катализатора.

В зависимости от применяемых катализаторов (а, следовательно, условий синтеза) различают два варианта превращения синтез-газа в метанол: синтезы при высоком и низком давлении.

При высоком давлении применяют катализаторы на основе оксида цинка, характеризующиеся низкой чувствительностью к сере, промотированные оксидами хрома (межкристаллический промотор – располагающийся вне кристаллической решетки ZnO) или оксидами железа, кальция, магния (внутрикристаллические промоторы – располагающиеся внутри кристаллической решетки ZnO).

Реакторы высокого давления представляют собой цельнокованные аппараты колонного типа, для эффективного теплоотвода используют реакторы полочного типа с промежуточным вводом холодного газа и выносным или встроенным теплообменником. Обычное число полок 5-6, для пуска агрегата применяют встроенный электронагреватель или специальную трубчатую печь.

Наиболее эффективными каталитическими системами, работающими при низком давлении, являются медьсодержащие оксидные катализаторы. Однако медьсодержащие катализаторы отличаются высокой чувствительностью к примесям сернистых соединений, почти всегда содержащимся в синтез-газе. Если при синтезе на цинк-хромовых катализаторах допустимо содержание сероводорода в синтез-газе выше 100 ррm, то для медных катализаторов этот показатель не может превышать 1 ppm.

При низком давлении используют полочные реакторы, аналогичные тем, что применяются при высоком давлении, или реакторы трубчатого типа, в которых катализатор загружен в трубки, а тепло реакции отводится кипящей водой, циркулирующей в межтрубном пространстве реактора и связанной с паросборником, так как при съеме тепла генерируется водяной пар. При использовании трубчатого реактора не требуется пусковой нагреватель, реактор в пусковой период разогревается водяным паром из сети, что является преимуществом реактора этого типа. В то же время достоинством полочного реактора является простота конструкции и легкость загрузки и выгрузки катализатора.

Природный газ отделяют от тяжелых углеводородов и компримируют в турбокомпрессоре 1 до 2,5 МПа, после чего направляют на очистку и далее в блок конверсии метана 3. Туда же поступает водяной пар. К метану добавляют небольшое количество СО 2 . Кон­версия метана осуществляется при температуре 850-860 °С. После печей конверсии синтез-газ поступает в котел-утилизатор 4, где генерируется пар высокого давления (12 МПа), который затем перегревается и поступает на турбины - привод компрессоров 1 и 11. Если конверсии подвергают тяжелое жидкое сырье, то блок очистки располагается после конверсии, а необходимость в ком­прессоре 1 отпадает. В последнем случае конверсию проводят при давлении 5,8 МПа, а синтез-газ после очистки не нуждается в до­полнительной компрессии и поступает в циркуляционный компрес­сор 11.

Синтез-газ, полученный из природного газа, направляют на доохлаждение с целью конденсации воды. Далее синтез-газ дожи­мается в турбокомпрессоре 12 до 5-5,5 МПа, смешивается с цир­куляционным газом и через теплообменник 6, обогреваемый горя­чим реакционным газом, поступает в два параллельно работаю­щих реактора синтеза метанола 7.

Технологическая схема синтеза метанола под низким давлением:

1,11,12- компрессоры; 2 - блок очистки; 3-блок конверсии метана; 4 - котел-утилизатор; 5 - блок очистки и доохлаждення синтез-газа; 6- теплообменник; 7 - реакторы син­теза метанола; 8-паросборник; 9 - холодильник; 10- газосепаратор в. д.

Реакторы трубчатого типа охлаждаются циркулирующей в межтрубном пространстве водой. Пар направляется в паросборник 8 , куда подается и химически очищенная вода. Конденсат из паросборника вновь поступает в реакторы 7, а водяной пар высокого давления направляется на перегрев и используется в турбинах. Продукты реакции направ­ляются через теплообменник 6 , где отдают свое тепло синтез-газу, в конденсатор-холодильник 9 и в газосепаратор 10 для отделения метанола от циркуляционного газа. Последний поступает на прием циркуляционного компрессора 11 и вновь направляется в систему синтеза. Часть газа отдувают для удаления поступающих в си­стему инертных примесей (главным образом метана и азота). Ме­танол-сырец из газосепаратора 10 направляется на ректификацию.

РЕФЕРАТ

Процесс Фишера-Тропша


Введение

углеводород катализатор технологический

История знает немало примеров, когда в силу острой необходимости рождались новые оригинальные подходы к решению давно существующих жизненно важных проблем. Так, в предвоенной Германии, лишенной доступа к нефтяным источникам, назревал жесткий дефицит топлива, необходимого для функционирования мощной военной техники. Располагая значительными запасами ископаемого угля, Германия была вынуждена искать пути его превращения в жидкое топливо. Эта проблема была успешно решена усилиями превосходных химиков, из которых, прежде всего, следует упомянуть Франца Фишера, директора Института кайзера Вильгельма по изучению угля.

В 1926 году была опубликована работа Франца Фишера и Ганса Тропша «О прямом синтезе нефтяных углеводородов при обыкновенном давлении» . В ней сообщалось, что при восстановлении водородом монооксида углерода при атмосферном давлении в присутствии различных катализаторов (железо-оксид цинка или кобальт-оксид хрома) при 270ºС получаются жидкие и даже твердые гомологи метана.

Так возник знаменитый синтез углеводородов из монооксида углерода и водорода, называемый с тех пор синтезом Фишера-Тропша (ФТ). Смесь CO и H2 в различных соотношениях, называемая синтез-газом, может быть получена как из угля, так и из любого другого углеродсодержащего сырья. После изобретения процесса германскими исследователями было сделано множество усовершенствований и исправлений и название «Фишер-Тропш» сейчас применяется к большому количеству сходных процессов.

Справедливости ради следует отметить, что синтез Фишера-Тропша возник не на пустом месте - к тому времени существовали научные предпосылки, которые базировались на достижениях органической химии и гетерогенного катализа. Еще в 1902 году П. Сабатье и Ж. Сандеран впервые получили метан из СО и H2. В 1908 году Е. Орлов открыл, что при пропускании монооксида углерода и водорода над катализатором, состоящим из никеля и палладия, нанесенных на уголь, образуется этилен .

Первый промышленный реактор был пущен в Германии в 1935 году, использовался Co-Th осажденный катализатор. В 1930-40-е годы на основе технологии Фишера-Тропша было налажено производство синтетического бензина (когазин-I, или синтин) с октановым числом 40÷55, синтетической высококачественной дизельной фракции (когазин-II) с цетановым числом 75÷100 и твердого парафина. Сырьем для процесса служил уголь, из которого газификацией получали синтез-газ, а из него углеводороды. Промышленность искусственного жидкого топлива достигла наибольшего подъема в годы второй мировой войны. К 1945 г. в мире имелось 15 заводов синтеза Фишера-Тропша (в Германии, США, Китае и Японии) общей мощностью около 1 млн. т углеводородов в год. Они выпускали в основном синтетические моторные топлива и смазочные масла. В Германии синтетическое топливо почти полностью покрывало потребности немецкой армии в авиационном бензине. Годовое производство синтетического топлива в этой стране достигло более 124 000 баррелей в день, т.е. около 6,5 миллионов тонн в 1944 году .

После 1945 года в связи с бурным развитием нефтедобычи и падением цен на нефть отпала необходимость синтеза жидких топлив из СО и Н2. Наступил нефтехимический бум. Однако в 1973 году разразился нефтяной кризис - нефтедобывающие страны ОПЕК (Organization of Petroleum Exporting Countries, Организация стран-экспортеров нефти) резко повысили цены на сырую нефть, и мировое сообщество вынуждено было осознать реальную угрозу истощения в обозримые сроки дешевых и доступных нефтяных ресурсов. Энергетический шок 70-х годов возродил интерес ученых и промышленников к использованию альтернативного нефти сырья, и здесь первое место, бесспорно, принадлежит углю. Мировые запасы угля огромны, они, по различным оценкам, более чем в 50 раз превосходят нефтяные ресурсы, и их может хватить на сотни лет .

Кроме этого, в мире имеется значительное количество источников углеводородных газов (как непосредственно залежи природного газа, так и попутный нефтяной газ), которые по тем или иным причинам не используются по экономическим причинам (значительная удаленность от потребителей и, как следствие, большие затраты на транспортировку в газообразном состоянии). Однако мировые запасы углеводородов иссякают, потребности в энергии растут, и в этих условиях расточительное использование углеводородов недопустимо, о чем свидетельствует неуклонный рост мировых цен на нефть с начала 21 века.

В этих условиях синтез Фишера-Тропша снова приобретает актуальность.


1. Химизм процесса


.1 Основные реакции образования углеводородов


Суммарные реакции синтеза углеводородов из оксидов углерода и водорода в зависимости от катализатора и условий процесса можно представить разными уравнениями, но все они сводятся к двум основным . Первая основная реакция - собственно синтез Фишера-Тропша:



Вторая основная реакция - равновесие водяного газа. Этот процесс особенно легко протекает на железных катализаторах как вторичный:



С учетом этой вторичной реакции для ФТ-синтеза на железных катализаторах получается суммарное уравнение:



Реакции (1) и (3) при стехиометрическом, исчерпывающем превращении позволяют получить максимальный выход 208,5 г углеводородов на 1 м3 смеси CO + Н2 при образовании только олефинов.

Реакция (2) может подавляться при низких температурах, малом времени контакта, циркуляции синтез-газа и удалении воды из циркулирующего газа, так что синтез может протекать частично по уравнению (1) с образованием воды и частично по уравнению (3) с образованием СO2.

Из уравнения (1) при удвоенном превращении по уравнению (2) получается суммарное уравнение синтеза углеводородов из СО и Н2O по Кёльбелу-Энгельгардту:



Стехиометрический выход равен 208,5 г [-СН2-] на 1 м3 смеси СО + Н2.

Образование углеводородов из СО2 и Н2 обусловлено уравнением (1) и реакцией, обратной (2):



Стехиометрический выход 156,25 г. [-СН2-] на 1 м3 смеси СO2 + Н2.

В общем виде уравнения выглядят следующим образом:

Для синтеза парафинов



Для синтеза олефинов


(10)

(11)

(12)

(13)


1.2 Побочные реакции


Метан образуется в присутствии кобальтовых и никелевых катализаторов:


(14)


4 на 1 м3 смеси СО + Н2. Вода, образующаяся при этом, конвертируется затем (особенно на железных катализаторах) в присутствии СО в смесь СО2 + Н2, поэтому суммарная реакция образования метана иная:


(15)


Стехиометрический выход 178,6 г СН4 на 1 м3 смеси СО + Н2. При температурах выше 300°С метан образуется также при гидрировании СО2 по суммарному уравнению:


(16)


Стехиометрический выход 142,9 г СН4 на 1 м3 смеси СO2 + H2. Процесс синтеза осложняется образованием углерода по реакции Будуара:


(17)


ФТ-синтез может быть направлен в сторону преимущественного образования спиртов или альдегидов, которые при синтезе углеводородов образуются как побочные продукты. Основные уравнения в случае спиртов следующие


(18)

(19)

(20)


а альдегиды образуются так:


(21)

(22)


Уравнения для других продуктов, образующихся в небольшом количестве (кетоны, карбоновые кислоты, эфиры), опущены.


.3 Механизм реакций


Гидрирование оксида углерода в процессе ФТ представляет собой комплекс сложных, параллельных и последовательных реакций. Первая стадия - одновременная хемосорбция оксида углерода и водорода на катализаторе. Оксид углерода в этом случае соединяется углеродным атомом с металлом, вследствие чего ослабляется связь С-О и облегчается взаимодействие СО и водорода с образованием первичного комплекса. С этого комплекса и начинается рост углеводородной цепи («начало цепи»). В результате дальнейшего ступенчатого присоединения поверхностного соединения, несущего один углеродный атом, углеродная цепочка удлиняется («рост цепи»). Рост цепи заканчивается в результате десорбции, гидрирования или взаимодействия растущей цепочки с продуктами синтеза («обрыв цепи»).

Основные продукты этих реакций - насыщенные и ненасыщенные углеводороды алифатического ряда, а побочные продукты - спирты, альдегиды и кетоны. Реакционноспособные соединения (ненасыщенные углеводороды, альдегиды, спирты и др.) могут при последующих реакциях встраиваться в растущие цепи или образовывать поверхностный комплекс, дающий начало цепи. В дальнейшем реакции между образующимися продуктами приводят к кислотам, эфирам и т.д. Реакции дегидроциклизации, протекающие при более высоких температурах синтеза, приводят к ароматическим углеводородам. Не следует исключать также протекание крекинга или гидрокрекинга более высококипящих углеводородов, первично образовавшихся и десорбированных с катализатора, если они снова адсорбируются на нем.

Механизм реакции, несмотря на десятилетия его изучения, в деталях остается неясен . Впрочем, эта ситуация типична для гетерогенного катализа. Наиболее признанным является механизм с ростом на конце цепи . Молекулы или атомы, переходящие в возбужденное состояние при одновременной хемосорбции оксида углерода и водорода на катализаторе, реагируют с образованием енольного первичного комплекса (схема А1), который также дает начало цепи. Рост цепи (схема А2) начинается с отщепления молекулы Н2O от двух первичных комплексов (с образованием С-С-связи) и отрыва атома С от атома металла в результате гидрирования. Образовавшийся комплекс С2, присоединяя один первичный комплекс, выделяет молекулу Н2O и в результате гидрирования освобождается от металла. Так, путем конденсации и гидрирования происходит ступенчатый рост цепи на каждый последующий С-атом. Начало цепи можно изобразить так:


Схема А1


Рост цепи у крайних С-атомов идет так:


Другая возможность состоит в том, что первоначально связь Me-С в первичном адсорбционном комплексе частично гидрируется, а затем образовавшееся соединение конденсируется с первичным комплексом, что ведет к наращиванию цепи по схеме (А3) или по схеме (А4) и в результате образуется вторичный метилразветвленный адсорбционный комплекс:


Схема А3


Схема А4


Десорбция первичного адсорбционного комплекса, всегда содержащего гидроксигруппу, приводит к альдегидам, а при последующих реакциях - к спиртам, кислотам и эфирам:

Углеводороды могут образоваться в результате дегидратации или расщепления адсорбционных комплексов:


Схема А5


Начало цепи могут также дать спирты и альдегиды после их адсорбции на катализаторе в фенольной форме

или олефины, которые, вероятно, после взаимодействия с водой связаны в енольной форме на катализаторе.

В качестве еще одной возможности роста цепи рассматривается полимеризация СН2-групп. При гидрировании первичного комплекса образуются НО-СН2- и СН2-поверхностные комплексы:



Гидрированный поверхностный комплекс взаимодействует с аналогичным комплексом с отщеплением воды (Б1):


Схема Б1

Точно так же образовавшиеся поверхностные комплексы могут взаимодействовать с первичным, негидрированным комплексом (с образованием С2-аддитивного комплекса по схеме Б2) или реагировать с комплексом после его гидрирования (по схеме Б1):


Схема Б2

Цепь может расти и путем полимеризации первично образовавшихся СН2-групп по схеме В (с изменением заряда на Me):


Вклад полимеризации в процесс роста цепи зависит от соотношения скоростей конденсации и полимеризации.


2. Катализаторы


ФТ-синтез начинается с одновременной хемосорбции СО и Н2 на атомах металла. Для образования такой хемосорбционной связи особенно пригодны переходные металлы с 3d- и 4f-электронами или их соединения внедрения (карбиды, нитриды и т.д.). Катализаторами служат металлы VIII группы: наиболее активен Ru, затем Co, Fe, Ni. Для увеличения поверхности их часто наносят на пористые носители, например, силикагель и глинозем. В промышленности нашли применение только Fe и Co. Рутений слишком дорог, кроме того, его запасы на Земле слишком малы для использования в качестве катализатора в многотоннажных процессах. На никелевых катализаторах при атмосферном давлении образуется в основном метан, при повышении же давления никель образует летучий карбонил и вымывается из реактора .

Кобальтовые катализаторы были первыми катализаторами, используемыми в промышленности (в Германии, а затем во Франции и Японии в 1930-1940-е годы). Типичными для их работы являются давление 1÷50 атм и температура 180÷250°С. В этих условиях образуются, главным образом, линейные парафины. Кобальт обладает значительной гидрирующей активностью, поэтому часть СО неизбежно превращается в метан. Эта реакция резко ускоряется с повышением температуры, поэтому кобальтовые катализаторы не могут использоваться в высокотемпературном процессе ФТ.

Железные катализаторы с середины 1950-х годов используются на заводах синтеза ФТ в ЮАР. По сравнению с кобальтовыми они гораздо более дешевы, работают в более широком интервале температур (200÷360°С), и позволяют получать более широкий спектр продуктов: парафины, низшие ?-олефины, спирты. В условиях синтеза ФТ железо катализирует реакцию водяного газа, что позволяет эффективно использовать получаемый из угля синтез-газ, в котором соотношение СО: Н2 ниже стехиометрического 1: 2. Железные катализаторы имеют более низкое сродство к водороду по сравнению с кобальтовыми, поэтому метанирование не является для них большой проблемой. Однако в силу той же низкой гидрирующей активности поверхность железных контактов быстро зауглероживается. Кобальтовые контакты способны работать без регенерации значительно дольше. Еще одним недостатком железных контактов является их ингибирование водой. Поскольку вода является продуктом синтеза, конверсия СО за один проход невысока. Для достижения высокой степени превращения необходимо организовывать рецикл газа .

И железные, и кобальтовые катализаторы крайне чувствительны к отравлению серой. Поэтому синтез-газ должен быть предварительно очищен от серы, по крайней мере, до уровня 2 мг/м3 . Остаточная сера адсорбируется поверхностью катализатора, так что в итоге продукты синтеза ФТ практически ее не содержат. Это обстоятельство делает синтетическое дизельное топливо, полученное по технологии ФТ, весьма привлекательным ввиду современных жестких экологических требований к транспорту.

При воздействии различных агентов на свежеприготовленные катализаторы группы железа изменяется состав и структура катализаторов, появляются фазы, действительно активные в ФТ-синтезе. В то время как число таких фаз в случае кобальта и никеля относительно небольшое, для железа их много, поэтому каталитическая система усложняется. Железо образует с углеродом или другими металлоидами (азот, бор и т.д.) соединения внедрения различного состава, не утрачивая при этом «металлического» характера, необходимого для ФТ-сннтеза.

Многие исследования подтвердили, что железные катализаторы в ходе ФТ-синтеза изменяются по фазовому составу, степени окисления и углеродным структурам внедрения. Железо восстановленного катализатора к началу синтеза переходит в карбид Fe2C (карбид Хэгга). Одновременно, но медленнее, образуется оксид Fe3O4, доля которого (в расчете на исходное железо) постоянно повышается, в то время как содержание карбида Fe2C в зависимости от времени работы и температуры меняется мало. Содержание свободного углерода возрастает с увеличением времени синтеза. В условиях эксплуатации фазовый состав катализатора находится в равновесии с составом реакционной смеси и только в малой степени зависит от способа его приготовления или предварительной обработки (восстановление, карбидирование) .

В работе Бартоломью показано, что на Co- и Ni - катализаторах СО гидрируется в метан по двум маршрутам, каждый из которых связан с определенными участками на поверхности . А.Л. Лапидус с сотрудниками выдвинули двухцентровую модель Co-катализатора синтеза ФТ. Согласно этим представлениям, центрами первого типа являются кристаллиты металлического Со. На них СО адсорбируется диссоциативно и затем гидрируется в метан. На этих же центрах происходит реакция диспропорционирования CO, приводящая к зауглероживанию катализатора. Центры второго типа представляют собой границу между металлическим Со и оксидной фазой на поверхности катализатора. Они ответственны за рост углеводородной цепи. Оксид углерода адсорбируется на СоO в слабосвязанной ассоциативной форме, затем перемещается на носитель, где образует с водородом поверхностные комплексы типа CHxO. Эти комплексы взаимодействуют друг с другом, образуя полимерные структуры на поверхности. Их гидрирование на СоO дает углеводороды.

Два типа адсорбции СО на поверхности обнаруживаются по спектру термопрограммированной десорбции (ТПД) СО, в котором центрам первого типа отвечает пик с Tmax в области 250-350°С, центрам второго - Tmax < 250°C. По соотношению площадей пиков можно судить о доле каждого из типов центров и, соответственно, предсказывать каталитическое действие контакта.

Эксперименты показали хорошую корреляцию между выходом углеводородов и количеством центров слабосвязанной адсорбции СО на поверхности контакта .

Оксидная фаза Со-катализаторов обычно формируется в процессе их предварительной термообработки (прокаливания и / или восстановления) вследствие взаимодействия оксидного носителя (SiO2, Al2O3 и др.), оксида кобальта и промотора. Катализаторы, не содержащие оксидной фазы, не способны катализировать образование жидких углеводородов из СО и Н2, поскольку не имеют на своей поверхности центров полимеризации.

Таким образом, оксидная фаза катализаторов синтеза ФТ играет определяющую роль в образовании жидких углеводородов, и для создания эффективных катализаторов этого процесса необходимо особое внимание уделять подбору носителя и проведению предварительной термообработки катализатора. Воздействуя на активную часть катализатора путем предварительной термообработки, приводящей к усилению взаимодействия активной фазы с носителем, или вводя в состав катализатора модифицирующие оксидные добавки, можно усилить полимеризационные свойства катализатора и, следовательно, увеличить селективность реакции в отношении образования жидких углеводородов.

Промоторы по принципу действия подразделяются на две группы - структурные и энергетические.

В качестве структурных промоторов используются трудно восстанавливаемые оксиды тяжелых металлов, например Аl2О3, ThO2, MgO и СаО. Они способствуют образованию развитой поверхности катализатора и препятствуют рекристаллизации каталитически активной фазы. Подобную функцию выполняют и носители - кизельгур, доломит, диоксид кремния (в форме свежеосажденного геля гидроксида или силиката калия).

Энергетические промоторы, которые также называют химическими, электронными или активирующими добавками, согласно электронному механизму реакции, увеличивают ее скорость и влияют на селективность. В качестве энергетических промоторов могут действовать также химически активные структурные промоторы. Энергетические промоторы (особенно щелочи) значительно влияют и на текстуру катализатора (поверхность, распределение пор).

В качестве энергетических промоторов для железных катализаторов (независимо от способа получения) чаще всего используют карбонаты щелочных металлов. Железным катализаторам, получаемым разными способами, соответствует неодинаковая оптимальная концентрация щелочной добавки. Осажденные катализаторы не должны содержать более 1% К2СО3 (в расчете на Fe); для определенных осажденных катализаторов оптимум составляет 0,2% К2СО3 (отклонение в 0,1% заметно влияет на активность и селективность). Для плавленых катализаторов указана оптимальная концентрация? 0,5% К2О.

К промоторам, обусловливающим и структурное, и энергетическое влияние, можно отнести медь. Медь облегчает восстановление железа, причем этот процесс в зависимости от количества меди может протекать при температуре, более низкой (вплоть до 150°С), чем без добавки. Далее эта добавка при сушке гидроксида железа (II и III) способствует окислению его до Fe2O3. Медь благоприятствует образованию соединений железа с углеродом и вместе со щелочью ускоряет восстановление железа, образование карбида и углерода. На селективность ФТ-синтеза медь не влияет .


3. Факторы, влияющие на процесс


.1 Качество сырья


Выход и состав продуктов ФТ-синтеза в значительной степени зависит от соотношения СО: Н2 в исходном синтез-газе. Это соотношение в свою очередь существенно зависит от применяемого способа получения синтез-газа. В настоящее время существуют три основных промышленных метода получения последнего.

Газификация угля. Процесс основан на взаимодействии угля с водяным паром:

Эта реакция является эндотермической, равновесие сдвигается вправо при температурах 900÷1000ºС. Разработаны технологические процессы, использующие парокислородное дутье, при котором наряду с упомянутой реакцией протекает экзотермическая реакция сгорания угля, обеспечивающая нужный тепловой баланс:

Конверсия метана. Реакция взаимодействия метана с водяным паром проводится в присутствии никелевых катализаторов (Ni/Al2O3) при повышенных температурах (800÷900ºС) и давлении:

В качестве сырья вместо метана может быть использовано любое углеводородное сырье.

Парциальное окисление углеводородов. Процесс заключается в неполном термическом окислении углеводородов при температурах выше 1300ºС:

Способ также применим к любому углеводородному сырью.

При газификации угля и парциальном окислении соотношение СО: Н2 близко к 1: 1, тогда как при конверсии метана оно составляет 1: 3 .

В целом, можно отметить следующие закономерности :

в случае исходной смеси, обогащенной водородом, получаются предпочтительно парафины, причем термодинамическая вероятность их образования уменьшается в ряду метан > низкомолекулярные н-алканы > высокомолекулярные н-алканы;

синтез-газ с высоким содержанием оксида углерода ведет к образованию олефинов и альдегидов, а также способствует отложению углерода. Вероятность образования алкенов уменьшается в ряду высокомолекулярные н-олефины > низкомолекулярные н-олефины.


.2 Температура


ФТ-синтез - сильно экзотермическая реакция. Образующееся тепло составляет до 25% от теплоты сгорания синтез-газа. Скорость синтеза и одновременно выход продукта с единицы объема катализатора за единицу времени повышаются с увеличением температуры. Однако скорость побочных реакций при этом также возрастает. Поэтому верхняя температура ФТ-синтеза ограничена в первую очередь нежелательным метано- и коксообразованием . Особенно сильное увеличение выхода метана при повышении температуры наблюдается для Co катализаторов.

Как правило, процесс проводится при температуре 190÷240°C (низкотемпературный вариант, для Co и Fe катализаторов) или 300÷350°C (высокотемпературный вариант, для Fe катализаторов) .


.3 Давление


Так же, как при повышении температуры, с ростом давления растет и скорость реакций. Кроме этого, повышение давления в системе способствует образованию более тяжелых продуктов. Типичными значениями давлений для промышленных процессов являются 0,1÷5 МПа. Так как повышенное давление позволяет увеличить производительность синтеза, для экономической эффективности процесс проводят при давлении 1,2÷4 МПа.

Совместное влияние температуры и давления, а также природы катализатора на выход различных продуктов удовлетворяет распределению Андерсона-Шульца-Флори (ASF), описываемому формулой

где Pn - массовая доля углеводорода с углеродным номером n;

K1/(k1+k2), k1, k2 - константы скорости роста и обрыва цепи соответственно.

Метан (n=1) всегда присутствует в большем количестве, чем предписывается распределением ASF, поскольку образуется независимо по реакции прямого гидрирования. Величина ? снижается с ростом температуры и, как правило, возрастает с ростом давления. Если в реакции образуются продукты разных гомологических рядов (парафины, олефины, спирты), то распределение для каждого из них может иметь свою величину ?. Распределение ASF накладывает ограничения на максимальную селективность по любому углеводороду или узкой фракции .

Графически распределение ASF представлено на рисунке 1.

.4 Объемная скорость


Повышение объемной скорости (или уменьшение времени контакта) газа не благоприятствует реакциям, протекающим с более низкой скоростью. К ним принадлежат реакции, идущие на поверхности катализатора, - отщепление кислорода, гидрирование олефинов и рост углеродной цепи. Поэтому с уменьшением среднего времени контакта в продуктах синтеза повышается количество спиртов, олефинов и соединений с короткой цепью (газообразные углеводороды и углеводороды из интервала выкипания бензиновой фракции) .


4. Разновидности технологических схем


Главной технической проблемой синтеза Фишера-Тропша является необходимость съема большого количества теплоты, выделяющейся в результате сильно экзотермических химических реакций. Конструкция реактора во многом определяется также видом продуктов, для получения которых он предназначен. Существуют несколько разновидностей конструкции реакторов для ФТ-синтеза, которые определяют ту или иную технологическую схему процесса.


.1 Схема с многотрубным реактором и стационарным слоем катализатора


В таких реакторах протекает низкотемпературный процесс в газовой фазе. Конструкция многотрубного реактора представлена на рисунке 2.

Многотрубные реакторы просты в эксплуатации, не создают проблем с отделением катализатора, могут использоваться для получения продуктов любого состава. Однако они имеют целый ряд недостатков: сложность в изготовлении, большая металлоемкость, сложность процедуры перегрузки катализатора, значительный перепад давления по длине, диффузные ограничения на крупных зернах катализатора, сравнительно невысокий теплоотвод .

Одна из возможных технологических схем высокопроизводительного ФТ-синтеза в многотрубном реакторе представлена на рисунке 3.

Технологические параметры представлены в таблице 1, состав получаемых продуктов - в таблице 2.


Таблица 1 - Условия работы промышленных установок газофазного синтеза Фишера-Тропша на стационарном слое катализатора

ПараметрЗначениеДавление, МПа2,3÷2,5Температура,°С220÷250Соотношение Н2: СО в исходном газе1,3: 2Соотношение циркуляционного и исходного газа2,5Число ступеней1÷2Состав катализатора, масс. ч.Fe (100)Сu (5)К2O (5)SiO2 (25)Продолжительность работы катализатора, мес.9÷12

Таблица 2 - Типичный состав углеводородов, получаемых в промышленных синтезах Фишера-Тропша на стационарном слое катализатора

ХарактеристикаЗначениеСостав продукта (средние данные), % масс. углеводороды: С127 С345 фракции 30-165°С8,5 165-230°С5 230-320°С7,6 320-460°С23 >460°С18 кислородсодержащие соединения4Степень превращения смеси СО + Н2, %73Выход углеводородов С2+, г на 1 м3 смеси СО + Н2140

.2 Схема с псевдоожиженным слоем катализатора


Реакторы с кипящим слоем обеспечивают хороший теплоотвод и изотермическое протекание процесса. Диффузные ограничения в них минимальны за счет высокой линейной скорости газа и использования мелкодисперсного катализатора. Однако такие реакторы сложно вывести на рабочий режим. Проблемой является отделение катализатора от продуктов. Отдельные узлы подвергаются сильной эрозии. Принципиальным ограничением реакторов с кипящим слоем является невозможность получения в них тяжелых парафинов . На рисунке 4 представлена технологическая схема ФТ-синтеза в реакторе с псевдоожиженным слоем катализатора.


Рисунок 4. Схема процесса Фишера-Тропша в реакторе с псевдоожиженным слоем катализатора:

3 - подогреватели; 2 - генератор синтез-газа; 4 - теплообменники; 5 - промывная колонна; 6 - реактор; 7 - циклон; 8 - сепаратор.


Технологические параметры процесса при работе по рассматриваемой схеме представлены в таблице 3, состав получаемых продуктов - в таблице 4.


Таблица 3 - Условия работы промышленной установки синтеза Фишера-Тропша в реакторе с псевдоожиженным слоем катализатора

ПараметрЗначениеДавление, МПа2,8Температура,°С315Соотношение Н2: СО в исходном газе3: 1Соотношение циркуляционного и исходного газа1,5

Таблица 4 - Типичный состав углеводородов, получаемых в реакторе с псевдоожиженным слоем катализатора

ХарактеристикаЗначениеСостав продукта (средние данные), % масс. С29 С3429 фракции 30-200°С40 200-320°С9 >320°С3 кислородсодержащие соединения10Степень превращения СО, %95÷98Выход углеводородов С2+, г на 1 м3 смеси СО + Н2160

.3 Схема с циркулирующим взвешенным порошкообразным катализатором


Данная схема также относится к высокотемпературному процессу Ф-Т. Технологическая схема процесса Фишера-Тропша в потоке взвешенного порошкообразного катализатора приведена на рисунке 5.


Рисунок 5. Схема ФТ-синтеза в потоке взвешенного порошкообразного катализатора:

Печь; 2 - реактор; 3 - холодильники; 4 - колонна-сепаратор для промывки маслом; 5 - конденсатор; 6 - разделительная колонна; 7 - колонна для промывки получаемого бензина; 8 - колонна для промывки газа.


Технологические параметры синтеза в случае проведения процесса в потоке взвешенного порошкообразного катализатора представлены в таблице 5, состав получаемых продуктов - в таблице 6.


Таблица 5 - Условия работы промышленных установок синтеза Фишера-Тропша в потоке взвешенного порошкообразного катализатора

ПараметрЗначениеДавление, МПа2,0÷2,3Температура,°С300÷340Соотношение Н2: СО в исходном газе в суммарном газе (2,4÷2,8): 1 (5÷6): 1Соотношение циркуляционного и исходного газа2,0÷2,4Продолжительность работы катализатора, сут.?40

Таблица 6 - Типичный состав углеводородов, получаемых на установке синтеза Фишера-Тропша в потоке взвешенного порошкообразного катализатора

ХарактеристикаЗначениеСостав продукта (средние данные), % масс.метан этилен этан пропилен пропан бутилены бутаны С512 С1318 С1921 С2230 С31+ кислородсодержащие соединения10 4 6 12 2 8 1 39 5 1 3 2 7Степень превращения смеси СО + Н2, %77÷85


4.4 Схема с барботажным (slurry) реактором

Реактор барботажного типа, который также называют пузырьковым (slurry), считается наиболее эффективным для синтеза ФТ. В этом аппарате синтез-газ проходит снизу вверх через слой высококипящего растворителя, в котором суспензирован мелкодисперсный катализатор. Подобно реакторам с кипящим слоем, в пузырьковом реакторе обеспечиваются эффективный массообмен и теплоотвод. В то же время в нем возможно получение тяжелых продуктов, как в трубчатом аппарате . На рисунке 6 представлена схема работы такого реактора.

Технологическая схема с применением барботажного реактора представлена на рисунке 7.


Рисунок 7. Схема ФТ-синтеза в барботажном реакторе:

Компрессор; 2 - расходомеры;.3 - диафрагмы; 4 - пробоотборники; 5 - реактор: 6 - паросборник; 7 - теплообменник; 8 - продуктовые емкости; 9 - разделительные емкости; 10 - насосы; 11 - холодильник; 12 - установка для выделения СО2; 13 - фильтр; 14 - аппарат для приготовления катализаторной суспензии; 15 - центрифуга; 16 - емкость для масла.


На примере данной схемы можно отметить большую технологическую гибкость синтеза ФТ, когда варьируя качеством сырья и технологическими показателями можно получать продукт требуемого фракционного состава (таблица 7).


Таблица 7 - Состав продуктов при различных режимах ведения ФТ-синтеза в барботажном реакторе

ПоказателиПолучение разных продуктовс низкой мол. массойсо средней мол. массойс высокой мол. массойВыход суммарного продукта С3+, г на 1 м3 смеси СО+Н2162172182Содержание в суммарном продукте С3+, % С3429,66,92,2 С5-190°С63,040,07,1 190-320°С6,225,78,3 320-450°С1,218,333,0 > 450°С-9,149,4

Значения технологических параметров для рассматриваемой схемы приведены в таблице 8.


Таблица 8 - Условия работы промышленных установок синтеза Фишера-Тропша с барботажным реактором

ПараметрЗначениеДавление, МПа1,0÷1,2Температура,°С210÷280Соотношение Н2: СО в исходном газе1: (1,3÷1,5)Объемная скорость, ч-1110÷190Степень превращения СО смеси СО + Н2, %89÷92 87÷90Выход углеводородов С1+, г на 1 м3 смеси СО + Н2176÷178

Для получения низкомолекулярных углеводородов применяются более высокие температура и объемная скорость, но пониженное давление. Если же требуются высокомолекулярные парафины, то указанные параметры соответственно меняют .


5. Современные производства


Сравнительно невысокие мировые цены на нефть, незначительно колеблющиеся около $20 (в пересчете на стоимость доллара США 2008 года) после второй мировой войны до 70-х годов 20 века , долгое время делали строительство крупных производств, основанных на синтезе Фишера-Тропша, нерентабельными. Многотоннажные производства синтетических углеводородов из синтез-газа существовали и развивались лишь в ЮАР, однако и это было обусловлено не экономической выгодой, а политической и экономической изоляцией страны при режиме апартеида. И в настоящее время заводы компании Sasol (South African Coal, Oil and Gas Corporation) остаются одними из самых производительных в мире .

В современных условиях предприятия, использующие процесс ФТ, способны рентабельно работать при цене на нефть более $40 за баррель. В случае, если по технологической схеме предусматривается улавливание и хранение либо утилизация углекислого газа, образующегося при синтезе, эта цифра возрастает до $50÷55 . Так как мировые цены на нефть не опускались ниже этих отметок с 2003 года , строительство крупных предприятий по производству синтетических углеводородов из синтез-газа не заставило себя ждать. Примечательно, что большинство проектов осуществляется в Катаре, богатым природным газом.

Ниже описаны крупнейшие действующие и строящиеся предприятия GTL (Gas to liquid, «газ в жидкость»), основанные на синтезе ФТ.


.1 Sasol 1, 2, 3. PetroSA


Южноафриканской компанией Sasol накоплен огромный опыт в промышленном применении синтеза ФТ. Первый пилотный завод Sasol 1 был пущен в 1955 году, сырьем для которого служит синтез-газ, получаемый методом газификации угля. Ввиду действия торговых эмбарго в отношении ЮАР в 50-х - 80-х годах 20 века, для обеспечения страны энергоносителями в 1980 и 1984 годах были введены в строй два более крупных производства - Sasol 2 и Sasol 3 .

Помимо этого компания Sasol является лицензиаром процесса GTL для южноафриканской государственной нефтяной компании PetroSA. Ее предприятие, также известное как Mossgas, работает с 1992 года. Сырьем является природный газ, добываемый в открытом море .

На протяжении многолетней эксплуатации производств Sasol инженеры компании стремились улучшить технологию синтеза, в работе были опробованы все четыре типа реакторов, описанных в разделе 4, начиная с многотрубных реакторов, работающих при атмосферном, а позже при повышенном давлении, и заканчивая барботажными реакторами.

Предприятия Sasol поставляют на рынок как моторные топлива, так и сырье для нефтехимии (олефины, спирты, альдегиды, кетоны и кислоты, а также фенол, крезолы, аммиак и серу) .



Данное предприятие введено в эксплуатацию в 2007 году в Катаре. Лицензиаром выступили совместно компании Sasol и Chevron, сформировав международное совместное предприятие Sasol Chevron Limited.

Исходный природный газ подвергается паровому риформингу, после чего полученный синтез-газ подается в барботажный реактор, где проходит низкотемпературный ФТ-синтез. Продукты синтеза подвергаются гидроочистке и гидрокрекингу.

Товарными продуктами являются экологически чистое дизельное топливо (менее 5 ppm серы, менее 1% ароматических углеводородов, цетановое число около 70), а также нафта, используемая как сырье для пиролиза .


5.3 SMDS


Компания Shell в 1993 году ввела в эксплуатацию свой завод Shell MDS (Middle Distillate Synthesis, синтез средних дистиллятов) в Малайзии. В основе процесса лежит современная модификация процесса ФТ. Синтез-газ для проведения реакции ФТ получают парциальным окислением природного газа. Процесс осуществляется в многотрубных реакторах, заполненных высокопроизводительным катализатором. Продукты синтеза (преимущественно высокомолекулярные алканы) подвергаются гидрокрекингу и гидроизомеризации.

Производство направлено на получение высококачественных синтетических дизельного топлива и керосина, а также парафинов .


.4 Pearl


Предприятие Pearl включает в себя крупнейшее в мире производство GTL, созданное компанией Shell совместно с Qatar Petroleum. Первая очередь комплекса пущена в мае 2011 года, выход на полную мощность запланирован на 2012 год . Технологический процесс, в общем, является развитием технологий, используемых на заводе SMDS. Цепочка процессов идентична: природный газ, добытый на шельфовых месторождениях, подвергается частичному окислению с получением смеси Н2 и СО; затем синтез-газ претерпевает превращения в многотрубных реакторах (24 аппарата) в парафины с длинной цепью. Последние в результате гидрокрекинга и разделения дают товарные продукты: моторные топлива, нафту (сырье для нефтехимии), а также в роли побочных продуктов базовые смазочные масла и парафины .


5.5 Escravos


Данный GTL-проект, осуществляемый в Нигерии, изначально разрабатывался совместно Sasol и Chevron Corporation, как и Oryx. Однако из-за существенно возросших затрат на осуществление проекта Sasol покинул его. В настоящий момент предприятие строится с участием Chevron Nigeria Limited и Nigerian National Petroleum Company. Ввод в эксплуатацию завода запланирован на 2013 год. Исходным сырьем является природный газ. Собственно ФТ-синтез будет осуществляться в барботажных реакторах. Отличительной чертой технологической схемы является использование фирменного процесса ISOCRACKING компании Chevron, благодаря которому крекируются до легких и средних дистиллятов и облагораживаются синтетические парафины - продукты ФТ-синтеза.

Товарной продукцией являются моторные топлива (в первую очередь дизельное), нафта, а также кислородосодержащие продукты - метанол и диметиловый эфир .

В таблицу 9 сведена общая информация об описанных выше производствах синтетических углеводородов .


Таблица 9 - Современные мощности GTL в мире

КомпанияРазработчик технологииМесто расположенияМощность, баррелей / суткиSasol 1SasolСасолбург, ЮАР5600Sasol 2, 3SasolСекунда, ЮАР124000Petro SA (бывший Mossgas)SasolМоссел Бей, ЮАР22500SMDSShellБинтулу, Малайзия14000EscravosSasol, ChevronЭскравос, Нигерия34000 (проект)OryxSasol, ChevronРас Лаффан, Катар33700PearlShellРас Лаффан, Катар70000


Кроме этого, перспективным является строительство заводов ФТ-синтеза в Алжире (до 33 тыс. баррелей в день) и Иране (до 120 тыс. баррелей в день).

Имеется информация о совместной разработке Sasol и норвежской Statoil установок, расположенных на морских платформах или даже плавучих заводов по переработке природного и попутного газа в жидкие углеводороды. Однако про осуществление этого проекта ничего не известно .

Разработан базовый проект и ведутся дальнейшие переговоры по строительству в Узбекистане завода GTL. На нем планируется перерабатывать метан, производимый Шуртанским газохимическим комплексом, по технологии компаний Sasol и Petronas .

Компании ExxonMobil, Syntroleum, ConocoPhillips занимаются исследованиями в области GTL-процессов, однако, эти фирмы пока имеют в своем распоряжении лишь пилотные установки, используемые для исследовательских целей .


Заключение


Синтез Фишера-Тропша позволяет получать из природных горючих ископаемых, используемых в настоящее время преимущественно как топливо для тепло- и электростанций (уголь, природный газ) или вовсе сжигаемых на факелах либо выбрасываемых в атмосферу (попутный нефтяной газ), высококачественные моторные топлива и ценное сырье для последующего химического синтеза. Преимущественно по первому пути идет развитие технологий компании Shell, процессы же фирмы Sasol сочетают оба направления. На рисунке 8 представлены возможные варианты переработки первичных продуктов ФТ-синтеза.


Качество получаемого в процессе ФТ по технологии Sasol Chevron дизельного топлива представлено в таблице 10 .


Таблица 10 - Характеристика синтетического ДТ

ХарактеристикаСинтетическое ДТТребования стандарта EN 590:2009Плотность при 15ºС, кг/м3780820÷845Температура выкипания 95% фракции, ºС355?360Кинематическая вязкость при 40ºС, мм2/с2,02,0÷4,5Температура вспышки, ºС>55>55Цетановое число>70>51Содержание серы, мг/кг<1?10Содержание полициклических ароматических углеводородов, % масс.<0,01?11Температура помутнения-23-Содержание насыщенных углеводородов, % об.>99-

Удачный либо неудачный опыт эксплуатации современных GTL-производств, в первую очередь Pearl - самого современно и крупного GTL-предприятия - вероятно определит будущее развитие технологии и заводов, использующих процесс ФТ. У GTL-технологии, помимо нестабильных цен на нефть, есть другие существенные проблемы.

Первая из них - очень высокая капиталоемкость. По расчетам, вложение в завод производительностью 80 тыс. баррелей синтетических углеводородов в день, исходным сырьем для которого является уголь, составляют от $7 млрд. до $9 млрд. Для сравнения: НПЗ такой же производительности обойдется в $2 млрд. Большая часть капитальных затрат (60÷70%) приходится на комплекс получения синтез-газа . Реальные цифры подтверждают расчеты: затраты на возводимый в Нигерии Escravos GTL с запланированных $1,7 млрд. поднялись до $5,9 млрд. Строительство Pearl GTL обошлось Shell в $18-19 млрд. Осуществление в Катаре грандиозного проекта по строительству GTL-завода мощностью 154 тыс. баррелей в сутки синтетических углеводородов было отклонено фирмой-разработчиком Exxon Mobil. В проект планировалось инвестировать $7 млрд., чего явно оказалось бы недостаточно. Однако компания объяснила отказ от проекта «перераспределением ресурсов» в пользу строительства газоперерабатывающего предприятия Barzan, также расположенного в Катаре .

Другой весомой проблемой является влияние на экологию. Как показано в разделе 1, в процессе ФТ образуется диоксид углерода, который является парниковым газом. Как считается, выбросы СО2 являются причиной глобальных климатических изменений, и количество выбрасываемого диоксида углерода ограничивается квотами на выбросы парниковых газов. В цепочке добыча-переработка-потребление для синтетических моторных топлив выбросы углекислого газа примерно вдвое превышают таковые для нефтяных топлив . Существуют различные технологии по утилизации углекислого газа (от хранения в подземных резервуарах до закачки в газо- или нефтеносный пласт), но они существенно удорожают и без того недешевые GTL-проекты. Однако стоит отметить, что другие вредные выбросы от непосредственно сгорания синтетических топлив в ДВС на 10÷50% ниже, чем для нефтяных топлив (таблица 11) .


Таблица 11 - Вредные выбросы при сгорании синтетического и традиционного ДТ

ВыбросыСинтетическое ДТ г/кВт·чНефтяное ДТ г/кВт·чУглеводороды (НС)0,210,25Монооксид углерода (CO)0,670,94Диоксид углерода (CO2)376308Оксиды азота (NOx)6,037,03Несгоревшие частицы (сажа)0,080,15

К экологической же проблеме можно отнести потребность в большом количестве воды для осуществления газификации угля, если последний используется в качестве исходного сырья. Зачастую климат в странах, богатых углем, но бедных нефтью, является засушливым. Однако на второй стадии GTL-производства - собственно синтез ФТ - вода является побочным продуктом, который после очистки можно использовать в технологическом процессе. Такая методика используется на заводе Pearl. Так как для получения синтез-газа на этом предприятии вода не нужна, она используется для выработки пара высокого давления при охлаждении реакторов ФТ. Получаемый водяной пар приводит компрессоры и электрогенераторы .

Рынок GTL является растущим рынком. Основными факторами, движущими этот рынок, являются настоятельная потребность в монетизации трудно утилизируемых другими способами (трубопроводным транспортом или сжижением) больших запасов природного, попутного нефтяного газа и газа угольных месторождений на фоне все возрастающей мировой потребности в жидких углеводородах и ужесточающихся требованиях к экологическим характеристикам углеводородного топлива. Освоение GTL-технологий является хорошей рыночной возможностью для тех стран и компаний, которые располагают большими запасами природного или попутного газа и угля. GTL-производства могут не конкурировать, а дополнять такие направления в отрасли, как LNG (Liquefied natural gas, сжиженный природный газ), производства экологически чистых топлив, высококачественных базовых масел.


Список использованных источников


1.Химические вещества из угля. Пер. с нем. /Под ред. И.В. Калечица - М.: Химия, 1980. - 616 с, ил.

2.Караханов Э.А. Синтез-газ как альтернатива нефти. II. Метанол и синтезы на его основе // Соросовский образовательный журнал. - 1997. - №12. - С. 68.

3.The Early Days of Coal Research [Электронный ресурс]. - Режим доступа: #"justify">4.Процесс Фишера - Тропша [Электронный ресурс]. - Режим доступа: #"justify">.Обзор катализаторов синтеза Фишера-Тропша [Электронный ресурс]. - Режим доступа: #"justify">6.Dry M.E. Applied Catalysis A: General. - 2004. - №276, - Р. 1.

7.11. Сторч Г., Голамбик Н., Голамбик Р. Синтез углеводородов из окиси углерода и водорода. - М.: И.Л., 1954. - С. 257.

8.Lee W.H., Bartolomew C.H.J. Catal. - 1989. - №120. - Р. 256.

.Wisam Al-Shalchi. Gas to liquids technology (GTL). - Baghdad - 2006.

10.Нефть [Электронный ресурс]. - Режим доступа: #"justify">11.Matthew Dalton. Big Coal Tries to Recruit Military to Kindle a Market. // The Wall Street Journal. - 2007. - Sept. 11.

.Explore Sasol - Sasol history [Электронный ресурс]. - Режим доступа: #"justify">.The PetroSA GTL Refinery & LTFT Technology Development [Электронный ресурс]. - Режим доступа: #"justify">.Oryx GTL [Электронный ресурс]. - Режим доступа: #"justify">.Shell MDS Technology and Process [Электронный ресурс]. - Режим доступа: #"justify">.Inside Shells Bintulu GTL Plant [Электронный ресурс]. - Режим доступа: #"justify">17.First cargo of Pearl GTL products ship from Qatar [Электронный ресурс]. - Режим доступа: #"justify">.Gas-to-liquids (GTL) processes [Электронный ресурс]. - Режим доступа: #"justify">19.Escravos Gas-to-Liquids Project, Niger Delta [Электронный ресурс]. - Режим доступа: #"justify">20.Обзор рынка GTL [Электронный ресурс]. - Режим доступа: #"justify">.Узбекистан развивает сотрудничество с компаниями «Сасол» и «Петронас» [Электронный ресурс]. - Режим доступа: #"justify">.Жемчужина GTL [Электронный ресурс]. - Режим доступа: #"justify">23.Exxon Mobil, Qatar Unplug GTL Project [Электронный ресурс]. - Режим доступа: http://www.imakenews.com/lng/e_article000760746.cfm? x=b96T25P, bd1Rfpn

Синтез Фишера - Тропша - это химический процесс, который является ключевой стадией самого современного способа получения синтетических топлив. Почему говорят именно «синтез» или «процесс» и избегают слова «реакция»? Именами ученых, в данном случае Франца Фишера и Ганса Тропша, называют обычно отдельные реакции. Дело в том, что как таковой реакции Фишера - Тропша нет. Это комплекс процессов. Только основных реакций в этом процессе три, а насчитывают их не менее одиннадцати. В целом синтез Фишера - Тропша - это превращение так называемого синтез-газа в смесь жидких углеводородов. Синтез-газ - устойчивое выражение, появившееся еще в XIX веке, которым начали обозначать тогда продукт углехимии, представляющий собой смесь оксида углерода (угарного газа) и водорода. Так как из этой газовой смеси можно получать при помощи разных реакций самые разные синтетические продукты, а тут такое название, синтез-газ. Оно такое абсолютно на всех языках. Некоторые сокращают. Англичане говорят syngas . В русском технологическом языке такой традиции нет.

В 1919 году немецкие ученые обнаружили, что если использовать в качестве катализаторов металлы 8-й группы, то при температурах в районе 200 °C (плюс-минус 100 °C) можно получать смеси жидких углеводородов. Сразу было понятно, что это большое открытие и оно позволяет получать углеводородное топливо не из нефти. Для Германии после Первой мировой войны это было особенно важно. Страна находилась, как бы сейчас сказали, под жесткими санкциями. Своей нефти в Германии не было. А уж когда к власти в этой стране пришли нацисты и начали готовиться к войне, стимул стал чрезвычайно острым. Поэтому эти работы были очень серьезно поддержаны германским правительством. В результате в 1919 году было сделано открытие, а в 1934 году уже работал первый промышленный завод, а в 1938-м - еще четыре. И во время Второй мировой войны значительная часть потребностей Германии, а заодно и Японии в топливе удовлетворялась эрзац-топливом, полученным по методу Фишера - Тропша. Скорее всего, из-за этого печального факта эти замечательные ученые так Нобелевскую премию и не получили: слишком хорошо сработали.

Надо сказать, что процесс в том виде, в каком он был изобретен, в каком он был внедрен в промышленность Германии в 1930-е годы, сегодня не смог бы получить одобрения ни одной компании, ни одной группы по одобрению бизнес-планов: он был отвратителен, побочных реакций протекало на этих катализаторах огромное количество, сотни. В результате этих побочных реакций получалось большое количество продуктов. Классический завод первого поколения производил 74 продукта, то есть это целый химический город. Это очень много. И ведь каждый продукт нужно отделить, очистить, привести в продаваемую форму. А среди этих форм - стиральный порошок, мыло, растворители, чистящие средства, всевозможные пластификаторы для полимеров - все это очень нужные вещи. Но представьте себе, что перед вами как перед государственным деятелем или как перед бизнесменом стоит задача получить бензин, дизельное топливо, а тут на вас навешивают еще 71 продукт.

Это тяжело, во все это нужно вкладывать деньги. Поэтому ничего удивительного в том нет, что сразу после поражения Германии и Японии во Второй мировой войне эта промышленность умерла, потому что она не могла никак конкурировать с обычной нефтеперегонкой. Тем более в мире начался нефтяной бум, была открыта дешевая нефть Ближнего Востока, а за ней и другие доступные нефтяные месторождения. Одно, правда, было исключение, очень интересное, а именно: группа немецких ученых переехала в Южно-Африканскую Республику, а Южная Африка, отделившись, как тогда англичане полагали, незаконно от Британской империи, попала в ситуацию вновь политических санкций, эмбарго, тем более там стали развиваться такие неприятные вещи, как апартеид против черного населения, ухудшился доступ к нефтяным ресурсам, и поэтому правительство учредило компанию «Южноафриканская синтетическая нефть». Эта компания живет и здравствует по сей день. Она обеспечила в 1950-е годы развертывание промышленности синтетического топлива и процесса Фишера - Тропша на новом уровне в Южной Африке.

Это было второе поколение этого процесса, уже более интересное, не такое медленное, порождающее не так много побочных продуктов, как первое. Там даже тип химических реакторов был другой. Если в первом поколении применялись кожухотрубные реакторы, то есть катализатор в виде гранул насыпался внутрь реакционных труб и через эти трубы пропускался газ, то во втором поколении уже применялся так называемый кипящий слой. Кстати, гранулы кипели, поддерживаемые очень мощным потоком сырьевого газа снизу. Существенно лучше было это второе поколение, но вновь, как видите, мотивация для того, чтобы оно применялось, была чисто политическая. Был бы у Южно-Африканского Союза нормальный доступ к нефти, никогда бы они этим не занимались. Однако сохранилась компетенция, сохранился научно-технический потенциал и даже перешел на новый уровень.

Третье поколение технологий появилось в связи с нефтяным мировым кризисом 1973 года.

Арабские страны наложили нефтяное эмбарго против стран Запада, и здесь уже интересный эффект: западный мир, где немалую роль уже играли тогда транснациональные корпорации, использовал не государственный механизм, а именно эти корпорации как мотор для нового развития этих технологий. Крупные нефтяные компании изучили опыт южноафриканской компании Sasol и в течение 1970-х - начала 1980-х годов срочно создали третье поколение этих технологий. Это поколение царствует в промышленности по сей день. Оно очень интересное. Количество побочных продуктов у него уменьшилось: оно оставляет около 30, а в лучших своих проявлениях всего-навсего 14. Оно любопытно тем, что катализаторы, которые используются в технологиях третьего поколения, производят не смесь относительно легких и жидких углеводородов, как это делали первое и второе поколения, а так называемые воски, твердые парафины, то есть такие длинноцепочечные углеводороды, что они не являются жидкими в обычных условиях, они твердые, как свечка. Собственно говоря, в том числе и для свечек их используют. Это порождает некоторые дополнительные проблемы, потому что эти твердые вещества надо подвергать дальнейшей обработке, гидрокрекингу, рвать эти слишком длинные цепочки. Но в общетехнологическую логику, которую выстроили авторы технологии третьего поколения, все это прекрасно укладывается. И лидерами этих технологий оказались голландская компания Shell и все та же южноафриканская компания Sasol . Им принадлежат три завода в Южной Азии, где на сегодняшний день наиболее дешевый и доступный газ. И они прекрасно работают.

Очень любопытно, что все это время, пока в Южной Африке развивалось второе поколение, а на Западе - третье, в Советском Союзе 40 лет успешно работал завод первого поколения в Новочеркасске, привезенный по репарациям из Германии. Он до сих пор существует, хотя был остановлен в 1994 году. Хорошо бы из него сделать музей. Так вот, технологии третьего поколения все еще уступают нефтеперерабатывающим заводам - уже немного, но уступают. При наличии выбора у здравого инвестора будет всегда только одно решение: делать бензин или дизельное топливо из нефти. И вот в начале XXI века ряд научных групп в разных странах, в том числе у нас, начал работать над реализацией четвертого поколения, которое отличается тем, что каждая гранула катализатора в нем - это не просто носитель активного металла, а это самая настоящая многофункциональная фабрика, которая делает всё: она делает первичный синтез Фишера - Тропша, получает воск, проводит разбиение на части, группирует по фракциям и получает настоящее последнее топливо. Уже в 2016–2017 годах запланированы к пуску первые небольшие промышленные заводы этого четвертого поколения. И надо сказать, что и в третьем, и в четвертом поколении, так как продукт синтетический и топливо получается разбиением длинных цепочечных молекул, а для того, чтобы катализатор работал, нужно очистить газ от всевозможных примесей, синтетическая нефть получается, как говорят, премиального качества: без ядовитых примесей, без технологически тяжелых компонентов, без смол. И такой продукт является, как я полагаю, будущим отечественного и мирового транспорта и энергетики на весьма долгие годы.