Найти частные производные 2 го порядка функции. Пример. Найти частные производные функции y x. Частные производные и полный дифференциал функции

Пример. Найти частные производные функции y x yxz

Решение. Полагая y =const , находимy xy x z

Полагая x =const , находим 2 2) 1 (1 y x x y xx y z

Пример. Найти значения частных производных функции в точке M (1, – 1, 0). xyzyxu)ln(

Решение. Полагая y = const , z = const , находим 10 11 22 1)02(1 22 22 , Ì czy yz yx x yzx yxx u

Аналогично находим 10 11 22 1)20(1 22 22 , M czx xz yx y xzy yxy u 110 , M cyx xyxy z u

Геометрическим смыслом частной производной (например,) является тангенс угла наклона касательной, проведенной в точке M 0 (x 0 , y 0 , z 0) к сечению поверхности плоскостью у = у 0. xz

Предположим, что функция z = f (x , y) имеет непрерывные частные производные), (yxf x z x), (yxf y z y

Эти производные в свою очередь являются функциями независимых переменных x и y. Будем называть и частными производными 1 — го порядка.), (yxf x), (yxf y

Частными производными 2 -го порядка называются частные производные от частных производных 1 -го порядка. Для функции z = f (x , y) двух переменных можно найти четыре частные производные 2 -го порядка, которые обозна-чаются следующим обр-м:

В общем случае смешанные частные производные могут не совпадать, однако для них справедлива теорема: Теорема. Если смешанные частные производные и непрерывны в некоторой точке M (x , y) , то они равны, т. е. xyfyxf), (yxfyxf yxxy

Ч астными производными n – го порядка называются частные производные от частных производных (n – 1)– го порядка. Их обозначают и т. д. 221 , yx z x z n n n

Пример. Найти частные производные 2 -го порядка функции)1 sin(23 xyyxz

Решение. Последовательно находим); 1 cos(3 22 xyyyx x z cy); 1 cos(2 3 xyxyx y z cx

); 1 sin(6)1 cos(3 22 22 2 2 xyyxy xyyyx xx z cy cy); 1 sin()1 cos(6)1 cos(3 2 22 2 xyyx xyyyx z cx cx

)1 sin()1 cos(6 1 cos(2 2 3 2 xyyx xyxyx xxy z cy cy)1 sin(2)1 cos(2 23 3 2 2 xyxx xyxyx yy z cx cx

Рассмотрим функцию z = f (x , y). Дадим аргументу x приращение Δ x , а аргументу y приращение Δ y. Тогда z получит приращение которое называется полным приращением функции z.), (yxfyyxxfz

Предположим, что f (x , y) в точке M (x , y) имеет непрерывные частные производные.

Определение. Дифференциалом 1 -го порядка функции z = f (x , y) называется главная часть полного приращения Δ z этой функции, линейная относительно Δ x и Δ y , обозначается символом dz или df и вычисляется по формуле y y z x x z zd

Так как дифференциалы независимых переменных совпадают с их приращениями, т. е. dx = Δ x , dy = Δ y , то эту формулу можно записать в виде: dy y z dx x z zd

Геометрическим смыслом полного дифференциала функции двух переменных f (x , y) в точке (х 0 , у 0) является приращение аппликаты (координаты z) касательной плоскости к поверхности при переходе от точки (х 0 , у 0) к точке (х 0 + х, у 0 + у).

Геометрический смысл полного дифференциала функции двух переменных является пространственным аналогом геометрического смысла дифференциала функции одной переменной.

Дифференциалом 2 -го порядка функции z = f (x , y) называется дифференциал от ее дифференциала 1 -го порядка и обозначается)(zzddd

Если все частные производные 2 -го порядка функции z = f (x , y) непрерывны, то имеет место формула: 2 2 2 y y z yx yx z x x z zddddd

Пример. Найти дифференциалы 1 -го и 2 -го порядков функции y x yz 2 x

Решение. Найдем частные производные 1 -го и 2 -го порядков: y yx x z 1 2 2 2 y x x y z

; 202 1 2 2 2 yy y xy xx z cy ; 1 2 2 2 y xy yyx z cx 33 22 22 2)2(0 y x yx y x x y y z cy

Следовательно, дифференциалы 1 -го и 2 -го порядков запишутся в виде: dy y x xdx y xyz)() 1 2(d 2 2 2 32 222) 1 2(22 y y x yx y xxyzddddd

Пусть функция f (x , y) дифференцируема в точке (х, у). Найдем полное приращение этой функции:), (yxfyyxxfz zyxfyyxxf), (

Если подставить в эту формулу выражение то получим приближенную формулу: y yf x xf dzz y y yxf x x yxf yyxxf), (

Пример. Вычислить приближенно значение исходя из значения функции при x = 1, y = 2, z = 102, 1 ln 04, 1 99, 1 zxu y ln

Решение. Из заданного выражения определим x = 1, 04 – 1 = 0, 04, y = 1, 99 – 2 = -0, 01, z = 1, 02 – 1 = 0, 02. Найдем значение функции u (x , y , z) = 11 ln

Находим частные производные: 1 12 12 ln 2 1 zx xy x u y y 0 ln 2 ln zx xx y u y y

Полный дифференциал функции u равен: 2 1 ln 2 1 zx z z u y

05, 001, 004, 0 02, 0 21 01, 0004, 01 02, 001, 004, 0 zu yu xudu

Точное значение этого выражения: 1, 049275225687319176. 05, 105, 01)1, 2, 1(02, 1 ln 04, 1 99, 1 duu

Касательной плоскостью к поверхности в ее точке M 0 называется плоскость, которая содержит все касательные к кривым, проведенным на поверхности через эту точку.

Нормалью к поверхности в точке M 0 называется прямая, проходящая через эту точку и перпендикулярная касательной плоскости, проведенной в данной точке.

Если поверхность задана уравнением F (x , y , z) = 0 то уравнение касательной плоскости в точке M 0 (x 0 , y 0 , z 0) имеет вид: 0))((00 0000 zz. MF yy. MFxx. MF z yx

Уравнения нормали, проведенной к поверхности в точке M 0 (x 0 , y 0 , z 0) , запишутся следующим образом:)()()(0 0 0 MF zz MF yy MF xx zyx

Если поверхность задана уравнением z = f (x , y) , то уравнение касательной плоскости в точке M 0 (x 0 , y 0 , z 0) имеет вид:))(, (000 0000 yyyxf xxyxfzz y x

а уравнения нормали запишутся так: 1), (0 00 0 zz yxf yy yxf xx yx

Пример. Составить уравнения касательной плоскости и нормали к поверхности в точке M 0 (x 0 , y 0 , z 0) , если 01332 22 yzxzxyyx. 1, 2 00 yx

Решение. Подставляя x 0 и y 0 в уравнение поверхности, находим значение z 0: откуда находим z 0 = 1. Следовательно, M 0 (2, – 1, 1) – точка касания. 01)1(32)1(23)1(2400 2 zz

По условию задачи поверхность задана неявно. Обозначим и найдем частные производные в точке M 0 (2, – 1, 1) : 1332), (22 yzxzxyyxzyx.

, 32 zyx. F x 21)1(322)(0 MF x , 334 zxy. F y 51323)1(4)(0 MF y , 3 yx. F z 1)1(32)(0 MF z

Подставля ем найденные значения частных производных в уравнение касательной плоскости 0))((00 0000 zz. MF yy. MFxx. MF z yx

У равнения нормали име ю т вид 1 1 5 1 2 2 zyx

Определение. Функция z = f (x , y) имеет максимум в точке M 0 (x 0 , y 0) , если существует такая окрестность этой точки, что для любых точек M (x , y) из этой окрестности выполняется неравенство), (00 yxfyxf

Пусть задана функция . Так как x и y – независимые переменные, то одна из них может изменяться, а другая сохранять свое значение. Дадим независимой переменной x приращение , сохраняя значение y неизменным. Тогда z получит приращение, которое называется частным приращением z по x и обозначается . Итак, .

Аналогично получаем частное приращение z по y: .

Полное приращение функции z определяется равенством .

Если существует предел , то он называется частной производной функции в точке по переменной x и обозначается одним из символов:

.

Частные производные по x в точке обычно обозначают символами .

Аналогично определяется и обозначается частная производная от по переменной y:

Таким образом, частная производная функции нескольких (двух, трех и больше) переменных определяется как производная функции одной из этих переменных при условии постоянства значений остальных независимых переменных. Поэтому частные производные функции находится по формулам и правилам вычисления производных функции одной переменной (при этом соответственно x или y считаются постоянной величиной).

Частные производные и называют частными производными первого порядка. Их можно рассматривать как функции от . Эти функции могут иметь частные производные, которые называются частными производными второго порядка. Они определяются и обозначаются следующим образом:

; ;

; .


Дифференциалы 1 и 2 порядка функции двух переменных.

Полный дифференциал функции (формула 2.5) называют дифференциалом первого порядка.

Формула для вычисления полного дифференциала имеет следующий вид:

(2.5) или , где ,

частные дифференциалы функции .

Пусть функция имеет непрерывные частные производные второго порядка. Дифференциал второго порядка определяется по формуле . Найдем его:


Отсюда: . Символически это записывается так:

.


НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ.

Первообразная функции, неопределенный интеграл, свойства.

Функция F(x) называется первообразной для данной функ­ции f{x), если F"(x)=f(x), или, что то же, если dF(x)=f(x)dx.

Теорема. Если функция f(x), определенная в некотором промежутке (X) конечной или бесконечной длины, имеет одну первообразную, F(x), то она имеет и бесконечно много первообразных; все они содержатся в выра­жении F(x)+С, где С - произвольная постоянная.

Совокупность всех первообразных для данной функции f(x), определенной в некотором промежутке или на некотором отрезке конечной или бесконечной длины, называется неопределенным интегралом от функ­ции f(x) [или от выражения f(x)dx ] и обозначается символом .



Если F(x) есть одна из первообразных для f(x), то согласно теореме о первообразных

, где С есть произвольная постоянная.

По определению первообразной F"(x)=f(x) и, следовательно, dF(x)=f(x) dx. В формуле (7.1), f(x) называется подинтегральной функцией, а f(x) dx - подинтегральным выражением.

Общий принцип нахождения частных производных порядка второго порядка функции трёх переменных аналогичен принципу нахождения частных производных 2-го порядка функции двух переменных.

Для того чтобы найти частные производные второго порядка, необходимо сначала найти частные производные первого порядка или, в другой записи:

Частных производных второго порядка девять штук.

Первая группа – это вторые производные по тем же переменным:

Или – вторая производная по «икс»;

Или – вторая производная по «игрек»;

Или – вторая производная по «зет».

Вторая группа – это смешанные частные производные 2-го порядка, их шесть:

Или – смешанная производная «по икс игрек»;

Или – смешанная производная «по игрек икс»;

Или – смешанная производная «по икс зет»;

Или – смешанная производная «по зет икс»;

Или – смешанная производная «по игрек зет»;

Или – смешанная производная «по зет игрек».

Как и для случая функции двух переменных, при решении задач можно ориентироваться на следующие равенства смешанных производных второго порядка:

Примечание: строго говоря, это не всегда так. Для равенства смешанных производных необходимо выполнение требования их непрерывности.

На всякий случай несколько примеров, как правильно читать сиё безобразие вслух:

– «у два штриха дважды по игрек»;

– «дэ два у по дэ зет квадрат»;

– «у два штриха по икс по зет»;

– «дэ два у по дэ зет по дэ игрек».

Пример 10

Найти все частные производные первого и второго порядка для функции трёх переменных:

.

Решение: Сначала найдем частные производные первого порядка:

Берём найденную производную

и дифференцируем её по «игрек»:

Берём найденную производную

и дифференцируем её по «икс»:

Равенство выполнено. Хорошо.

Разбираемся со второй парой смешанных производных.

Берём найденную производную

и дифференцируем её по «зет»:

Берём найденную производную

и дифференцируем её по «икс»:

Равенство выполнено. Хорошо.

Аналогично разбираемся с третьей парой смешанных производных:

Равенство выполнено. Хорошо.

После проделанных трудов гарантированно можно утверждать, что, во-первых, мы правильно нашли все частные производные 1-го порядка, во-вторых, правильно нашли и смешанные частные производные 2-го порядка.

Осталось найти ещё три частные производные второго порядка, вот здесь уже во избежание ошибок следует максимально сконцентрировать внимание:

Готово. Повторюсь, задание не столько сложное, сколько объемное. Решение можно сократить и сослаться на равенства смешанных частных производных, но в этом случае не будет проверки. Поэтому лучше потратить время и найти все производные (к тому же это может потребовать преподаватель), или, в крайнем случае, выполнить проверку на черновике.

Пример 11

Найти все частные производные первого и второго порядка для функции трёх переменных

.

Это пример для самостоятельного решения.

Решения и ответы:

Пример 2: Решение:

Пример 4: Решение: Найдем частные производные первого порядка.

Составим полный дифференциал первого порядка:

Пример 6: Решение: M (1, -1, 0):

Пример 7: Решение: Вычислим частные производные первого порядка в точке M (1, 1, 1):


Пример 9: Решение:



Пример 11: Решение: Найдем частные производные первого порядка:

Найдем частные производные второго порядка:


.

Интегралы

8.1. Неопределенный интеграл. Подробные примеры решений

Начнем изучение темы «Неопределенный интеграл» , а также подробно разберем примеры решений простейших (и не совсем) интегралов. Как обычно, мы ограничимся минимумом теории, которая есть в многочисленных учебниках, наша задача – научиться решать интегралы.

Что нужно знать для успешного освоения материала? Для того, чтобы справиться с интегральным исчислением, Вам необходимо уметь находить производные, минимум, на среднем уровне. Не лишним опытом будет, если у Вас за плечами несколько десятков, а лучше – сотня самостоятельно найденных производных. По крайне мере, Вас не должны ставить в тупик задания на дифференцирование простейших и наиболее распространенных функций.

Казалось бы, причем здесь вообще производные, если речь в статье пойдет об интегралах?! А дело вот в чем. Дело в том, что нахождение производных и нахождение неопределенных интегралов (дифференцирование и интегрирование) – это два взаимно обратных действия , как, например, сложение/вычитание или умножение/деление. Таким образом, без навыка и какого-никакого опыта нахождения производных, к сожалению, дальше не продвинуться.

В этой связи нам потребуются следующие методические материалы: Таблица производных и Таблица интегралов .

В чем сложность изучения неопределенных интегралов? Если в производных имеют место строго 5 правил дифференцирования, таблица производных и довольно четкий алгоритм действий, то в интегралах всё иначе. Существуют десятки способов и приемов интегрирования. И, если способ интегрирования изначально подобран неверно (т.е. Вы не знаете, как решать), то интеграл можно «колоть» буквально сутками, как самый настоящий ребус, пытаясь приметить различные приемы и ухищрения. Некоторым даже нравится.

Между прочим, нам довольно часто приходилось слышать от студентов (не гуманитарных специальностей) мнение вроде: «У меня никогда не было интереса решить предел или производную, но вот интегралы – совсем другое дело, это увлекательно, всегда есть желание «взломать» сложный интеграл». Стоп. Хватит чёрного юмора, переходим к этим самым неопределенным интегралам.

Коль скоро способов решения существует много, то с чего же начать изучение неопределенных интегралов чайнику? В интегральном исчислении существуют, на наш взгляд, три столпа или своеобразная «ось», вокруг которой вращается всё остальное. В первую очередь следует хорошо разобраться в простейших интегралах (эта статья).

Потом нужно детально проработать урок . ЭТО ВАЖНЕЙШИЙ ПРИЁМ! Может быть, даже самая важная статья из всех статей, посвященных интегралам. И, в-третьих, обязательно следует ознакомиться с методом интегрирования по частям , поскольку с помощью него интегрируется обширный класс функций. Если Вы освоите хотя бы эти три урока, то уже «не два». Вам могут «простить» незнание интегралов от тригонометрических функций , интегралов от дробей , интегралов от дробно-рациональных функций , интегралов от иррациональных функций (корней) , но вот если «сесть в лужу» на методе замены или методе интегрирования по частям – то это будет очень и очень скверно.

Итак, начинаем с простого. Посмотрим на таблицу интегралов. Как и в производных, мы замечаем несколько правил интегрирования и таблицу интегралов от некоторых элементарных функций. Любой табличный интеграл (да и вообще любой неопределенный интеграл) имеет вид:

Сразу разбираемся в обозначениях и терминах:

– значок интеграла.

– подынтегральная функция (пишется с буквой «ы»).

– значок дифференциала. Что это такое, мы рассмотрим совсем скоро. Главное, что при записи интеграла и в ходе решения важно не терять данный значок. Заметный недочет будет.

– подынтегральное выражение или «начинка» интеграла.

первообразная функция.

. Не нужно сильно загружаться терминами, здесь самое важное, что в любом неопределенном интеграле к ответу приплюсовывается константа .

Решить неопределенный интеграл – это значит найти множество первообразных функций от данной подынтегральной функции

Еще раз посмотрим на запись:

Посмотрим в таблицу интегралов.

Что происходит? Левые части у нас превращаются в другие функции: .

Упростим наше определение:

Решить неопределенный интеграл– это значит ПРЕВРАТИТЬ его в неопределенную (с точностью до константы) функцию , пользуясь некоторыми правилами, приемами и таблицей.

Возьмем, например, табличный интеграл . Что произошло? Символическая запись превратилась в множество первообразных функций .

Как и в случае с производными, для того, чтобы научиться находить интегралы, не обязательно быть в курсе, что такое интеграл, или первообразная функция с теоретической точки зрения. Достаточно просто осуществлять превращения по некоторым формальным правилам. Так, в случае совсем не обязательно понимать, почему интеграл превращается именно в . Можно принять эту и другие формулы как данность. Все пользуются электричеством, но мало кто задумывается, как там по проводам бегают электроны.

Так как дифференцирование и интегрирование – противоположные операции, то для любой первообразной, которая найденаправильно, справедливо следующее:

Иными словами, если продифференцировать правильный ответ, то обязательно должна получиться исходная подынтегральная функция.

Вернемся к тому же табличному интегралу .

Убедимся в справедливости данной формулы. Берем производную от правой части:

– это исходная подынтегральная функция.

Вот, кстати, стало понятнее, почему к функции всегда приписывается константа . При дифференцировании константа всегда превращается в ноль.

Решить неопределенный интеграл – это значит найти множество всех первообразных, а не какую-то одну функцию. В рассматриваемом табличном примере , , , и т. д. – все эти функции являются решением интеграла . Решений бесконечно много, поэтому записывают коротко:

Таким образом, любой неопределенный интеграл достаточно легко проверить. Это некоторая компенсация за большое количество интегралов разных видов.

Переходим к рассмотрению конкретных примеров. Начнем, как и при изучении производной, с двух правил интегрирования:

– константу C можно (и нужно) вынести за знак интеграла.

– интеграл суммы (разности) двух функций равен сумме (разности) двух интегралов. Данное правило справедливо для любого количества слагаемых.

Как видите, правила, в принципе, такие же, как и для производных. Иногда их называют свойствами линейности интеграла.

Пример 1

Найти неопределенный интеграл.

Выполнить проверку.

Решение: Удобнее преобразовать его, как.

(1) Применяем правило . На забываем записать значок дифференциала dx под каждым интегралом. Почему под каждым? dx – это полноценный множитель. Если расписывать детально, то первый шаг следует записать так:

.

(2) Согласно правилу выносим все константы за знаки интегралов. Обратите внимание, что в последнем слагаемом tg 5 – это константа, её также выносим.

Кроме того, на данном шаге готовим корни и степени для интегрирования. Точно так же, как и при дифференцировании, корни надо представить в виде. Корни и степени, которые располагаются в знаменателе – перенести вверх.

Примечание: в отличие от производных, корни в интегралах далеко не всегда следует приводить к виду , а степени переносить вверх.

Например, – это готовый табличный интеграл, который уже посчитали до Вас, и всякие китайские хитрости вроде совершенно не нужны. Аналогично: – это тоже табличный интеграл, нет никакого смысла представлять дробь в виде . Внимательно изучите таблицу!

(3) Все интегралы у нас табличные. Осуществляем превращение с помощью таблицы, используя формулы: , и

для степенной функции - .

Следует отметить, что табличный интеграл – это частный случай формулы для степенной функции: .

Константу C достаточно приплюсовать один раз в конце выражения

(а не ставить их после каждого интеграла ).

(4)Записываем полученный результат в более компактном виде, когда все степени вида

снова представляем в виде корней, а степени с отрицательным показателем сбрасываем обратно в знаменатель.

Проверка. Для того чтобы выполнить проверку нужно продифференцировать полученный ответ:

Получена исходная подынтегральная функция , т. е. интеграл найден правильно. От чего плясали, к тому и вернулись. Хорошо, когда история с интегралом заканчивается именно так.

Время от времени встречается немного другой подход к проверке неопределенного интеграла, когда от ответа берется не производная, а дифференциал:

.

В итоге получаем не подынтегральную функцию, а подынтегральное выражение.

Не стоит пугаться понятия дифференциал.

Дифференциал – это производная, умноженная на dx .

Однако нам важны не теоретические тонкости, а то, что с этим дифференциалом дальше делать. Дифференциал раскрывается следующим образом: значок d убираем, справа над скобкой ставим штрих, в конце выражения приписываем множитель dx :

Получено исходное подынтегральное выражение , то есть интеграл найден правильно.

Как видите, дифференциал сводится к нахождению производной. Второй способ проверки мне нравится меньше, так как приходиться дополнительно рисовать большие скобки и тащить значок дифференциала dx до конца проверки. Хотя он корректнее, или «солиднее», что ли.

На самом деле можно было умолчать о втором способе проверки. Дело не в способе, а в том, что мы научились раскрывать дифференциал. Еще раз.

Дифференциал раскрывается следующим образом:

1) значок d убираем;

2) справа над скобкой ставим штрих (обозначение производной);

3) в конце выражения приписываем множитель dx .

Например:

Запомните это. Рассмотренный приём потребуется нам очень скоро.

Пример 2

.

Когда мы находим неопределенный интеграл, то ВСЕГДА стараемся сделать проверку , тем более, для этого есть прекрасная возможность. Далеко не все типы задач в высшей математике являются подарком с этой точки зрения. Неважно, что часто в контрольных заданиях проверки не требуется, её никто, и ничто не мешает провести на черновике. Исключение можно сделать лишь тогда, когда не хватает времени (например, на зачете, экзамене). Лично я всегда проверяю интегралы, а отсутствие проверки считаю халтурой и некачественно выполненным заданием.

Пример 3

Найти неопределенный интеграл:

. Выполнить проверку.

Решение: Анализируя интеграл, мы видим, что у нас под интегралом произведение двух функций, да еще и возведение в степень целого выражения. К сожалению, на поприще интегральной битвы нет хороших и удобных формул для интегрирования произведения и частного в виде: или .

Поэтому, когда дано произведение или частное, всегда имеет смысл посмотреть, а нельзя ли преобразовать подынтегральную функцию в сумму? Рассматриваемый пример – тот случай, когда можно.

Сначала приведём полное решение, комментарии будут ниже.

(1) Используем старую добрую формулу квадрата суммы для любых действительных чисел , избавляясь от степени над общей скобкой. за скобки и применяя формулу сокращенного умножения в обратном направлении: .

Пример 4

Найти неопределенный интеграл

Выполнить проверку.

Это пример для самостоятельно решения. Ответ и полное решение в конце урока.

Пример 5

Найти неопределенный интеграл

. Выполнить проверку.

В данном примере подынтегральная функция представляет собой дробь. Когда мы видим в подынтегральном выражении дробь, то первой мыслью должен быть вопрос: «А нельзя ли как-нибудь от этой дроби избавиться, или хотя бы её упростить?».

Замечаем, что в знаменателе находится одинокий корень из «икс». Один в поле – не воин, значит, можно почленно разделить числитель на знаменатель:

Действия с дробными степенями мы не комментируем, так как о них неоднократно шла речь в статьях о производной функции.

Если Вас все-таки ставит в тупик такой пример, как

и ни в какую не получается правильный ответ ,

Также обратите внимание, что в решении пропущен один шаг, а именно, применение правил , . Обычно при определенном опыте решения интегралов данные правила считают очевидным фактом и не расписывают подробно.

Пример 6

Найти неопределенный интеграл. Выполнить проверку.

Это пример для самостоятельно решения. Ответ и полное решение в конце урока.

В общем случае с дробями в интегралах не всё так просто, дополнительный материал по интегрированию дробей некоторых видов можно найти в статье: Интегрирование некоторых дробей . Но, прежде чем перейти к вышеуказанной статье, необходимо ознакомиться с уроком: Метод замены в неопределенном интеграле . Дело в том, что подведение функции под дифференциал или метод замены переменной является ключевым моментом в изучении темы, поскольку встречается не только «в чистых заданиях на метод замены», но и во многих других разновидностях интегралов.

Решения и ответы:

Пример 2: Решение:

Пример 4: Решение:

В данном примере мы использовали формулу сокращенного умножения

Пример 6: Решение:


Метод замены переменной в неопределенном интеграле. Примеры решений

На данном уроке мы познакомимся с одним из самых важных и наиболее распространенных приемов, который применяется в ходе решения неопределенных интегралов – методом замены переменной. Для успешного освоения материала требуются начальные знания и навыки интегрирования. Если есть ощущение пустого полного чайника в интегральном исчислении, то сначала следует ознакомиться с материалом Неопределенный интеграл. Примеры решений , где объяснено в доступной форме, что такое интеграл и подробно разобраны базовые примеры для начинающих.

Технически метод замены переменной в неопределенном интеграле реализуется двумя способами:

– Подведение функции под знак дифференциала.

– Собственно замена переменной.

По сути дела, это одно и то же, но оформление решения выглядит по-разному. Начнем с более простого случая.

На данном уроке мы познакомимся с понятием функции двух переменных, а также подробно рассмотрим наиболее распространенное задание – нахождение частных производных первого и второго порядка, полного дифференциала функции.

Для эффективного изучения нижеизложенного материала Вам необходимо уметь более или менее уверенно находить «обычные» производные функции одной переменной. Научиться правильно обращаться с производными можно на уроках Как найти производную? и Производная сложной функции . Также нам потребуется таблица производных элементарных функций и правил дифференцирования, удобнее всего, если она будет под рукой в распечатанном виде.

Начнем с самого понятия функции двух переменных, постараемся ограничиться минимумом теории, так как сайт имеет практическую направленность. Функция двух переменных обычно записывается как , при этом переменные , называются независимыми переменными или аргументами .

Пример: - функция двух переменных.

Иногда используют запись . Также встречаются задания, где вместо буквы используется буква .

Полезно знать геометрический смысл функций. Функции одной переменной соответствует определенная линия на плоскости, например, – всем знакомая школьная парабола. Любая функция двух переменных с геометрической точки зрения представляет собой поверхность в трехмерном пространстве (плоскости, цилиндры, шары, параболоиды и т.д.). Но, собственно, это уже аналитическая геометрия, а у нас на повестке дня математический анализ.

Переходим к вопросу нахождения частных производных первого и второго порядков. Должен сообщить хорошую новость для тех, кто выпил несколько чашек кофе и настроился на невообразимо трудный материал: частные производные – это почти то же самое, что и «обычные» производные функции одной переменной.

Для частных производных справедливы все правила дифференцирования и таблица производных элементарных функций. Есть только пара небольших отличий, с которыми мы познакомимся прямо сейчас.



Пример 1

Найти частные производные первого и второго порядка функции

Сначала найдем частные производные первого порядка. Их две.

Обозначения:

Или – частная производная по «икс»

Или – частная производная по «игрек»

Начнем с .

Важно! Когда мы находим частную производную по «икс», то переменнаясчитается константой (постоянным числом).

Решаем. На данном уроке будем сразу приводить полное решение, а комментарии давать ниже.

Комментарии к выполненным действиям:

(1) Первое, что мы делаем при нахождении частной производной – заключаем всю функцию в скобки под штрих с подстрочным индексом .

Внимание, важно! Подстрочные индексы НЕ ТЕРЯЕМ по ходу решения. В данном случае, если Вы где-нибудь нарисуете «штрих» без , то преподаватель, как минимум, может поставить рядом с заданием (сразу откусить часть балла за невнимательность).

(2) Используем правила дифференцирования ; . Для простого примера, как этот, оба правила вполне можно применить на одном шаге. Обратите внимание на первое слагаемое: так как считается константой, а любую константу можно вынести за знак производной , то мы выносим за скобки. То есть в данной ситуации ничем не лучше обычного числа. Теперь посмотрим на третье слагаемое : здесь, наоборот, выносить нечего. Так как константа, то – тоже константа, и в этом смысле она ничем не лучше последнего слагаемого – «семерки».

(2) Используем таблицу производных элементарных функций. Мысленно поменяем в таблице все «иксы» на «игреки». То есть данная таблица рАвно справедлива для(и вообще для любой буквы). В данном случае, используемые нами формулы имеют вид: и .

Итак, частные производные первого порядка найдены

И не нужно ничего искать: в нашей отдельной статье мы уже подготовили все для того, чтобы у вас это получилось. А сейчас речь пойдет о частных производных.

Добро пожаловать на наш телеграм-канал за полезной рассылкой и актуальными студенческими новостями.

Функция двух и более переменных

Прежде чем говорить о частных производных, нужно затронуть понятие функции нескольких переменных, без которого нет смысла в частной производной. В школе мы привыкли иметь дело с функциями одной переменной:

Производными таких функций мы и считали раньше. График функции одной переменной представляет собой линию на плоскости: прямую, параболу, гиперболу и т.д.

А что, если добавить еще одну переменную? Получится такая функция:

Это – функция двух независимых переменных x и y . График такой функции представляет собой поверхность в трехмерном пространстве: шар, гиперболоид, параболоид или еще какой-нибудь сферический конь в вакууме. Частные производные функции z по иксу и игреку соответственно записываются так:

Существуют также функции трех и более переменных. Правда, график такой функции нарисовать невозможно: для этого понадобилось бы как минимум четырехмерное пространство, которое невозможно изобразить.

Частная производная первого порядка

Запоминаем главное правило:

При вычислении частной производной по одной из переменных, вторая переменная принимается за константу. В остальном правила вычисления производной не меняются.

То есть, частная производная по сути ничем не отличается от обычной. Так что, держите перед глазами таблицу производных элементарных функций и правила вычисления обычных производных . Рассмотрим пример, чтобы стало совсем понятно. Допустим, нужно вычислить частные производные первого порядка следующей функции:

Сначала возьмем частную производную по иксу, считая игрек обычным числом:

Теперь считаем частную производную по игреку, принимая икс за константу:

Как видите, ничего сложного в этом нет, а успех с более сложными примерами – лишь дело практики.

Частная производная второго порядка

Как находится частная производная второго порядка? Так же, как и первого. Чтобы найти частные производные второго порядка, нужно просто взять производную от производной первого порядка. Вернемся к примеру выше и посчитаем частные производные второго порядка.

По игреку:

Частные производные третьего и высших порядков не отличаются по принципу вычисления. Систематизируем правила:

  1. При дифференцировании по одной независимой переменной, вторая принимается за константу.
  2. Производная второго порядка – это производная от производной первого порядка. Третьего порядка – производная от производной второго порядка и т.д.

Частные производные и полный дифференциал функции

Частый вопрос в практических заданиях – нахождение полного дифференциала функции. Для функции нескольких переменных полный дифференциал определяется, как главная линейная часть малого полного приращения функции относительно приращений аргументов.

Определение звучит громоздко, но с буквами все проще. Полный дифференциал первого порядка функции нескольких переменных выглядит так:

Зная, как считаются частные производные, нет никакой проблемы вычислить и полный дифференциал.

Частные производные – не такая уж и бесполезная тема. Например, дифференциальные уравнения в частных производных второго порядка широко используются для математического описания реальных физических процессов.

Здесь мы дали лишь общее, поверхностное представление о частных производных первого и второго порядка. Вас интересует эта тема или остались конкретные вопросы? Задавайте их в комментариях и обращайтесь к экспертам профессионального студенческого сервиса за квалифицированной и скорой помощью в учебе. С нами вы не останетесь один на один с проблемой!