Механическими методами выделения аэробов являются. Чистая культура бактерий и методы ее выделения. Методики проведения оценки возбудителя

  • Периплазматическое пространство
  • 5. Основные формы бактерий
  • 6. Микроскопический метод диагностики инфекционных заболеваний
  • 7. Простые и сложные методы окраски
  • 8. Механизмы окрасок по Граму и Цилю-Нильсену
  • III. План практической работы
  • IV. Примеры ситуационных задач
  • Тема 2: Специальные методы окраски. Устройство биологического микроскопа. Виды
  • I. Вопросы для самоподготовки:
  • II. Базовый текст
  • 1. Специальные методы окраски для выявления отдельных структур бактерий
  • 2. Методы окраски отдельных групп про- и эукариот
  • 3. Изучение подвижности микроорганизмов
  • 4. Виды микроскопии
  • 5. Устройство биологического микроскопа
  • 6. Порядок проведения иммерсионной микроскопии
  • III. План практической работы
  • IV. Примеры ситуационных задач
  • Тема 3: Морфология и ультраструктура отдельных групп микроорганизмов: риккетсий, хламидий, микоплазм, актиномицет, спирохет, грибов, простейших
  • I. Вопросы для самоподготовки:
  • II. Базовый текст
  • III. План практической работы
  • IV. Примеры ситуационных задач
  • Теоретические вопросы для рубежного контроля знаний
  • Перечень практических навыков
  • Модуль ιι «Физиология микроорганизмов»
  • I. Вопросы для самоподготовки:
  • II. Базовый текст
  • 1. Состав и требования, предъявляемые к питательным средам
  • 2. Классификация питательных сред
  • 3. Понятия асептики и антисептики
  • 4. Понятие дезинфекции, методы дезинфекции и контроль эффективности дезинфекции
  • 5. Понятие стерилизации, методы, аппаратура и режимы стерилизации
  • 6. Методы определения эффективности стерилизации
  • 7. Понятие о виде, штамме, колонии, чистой культуре микроорганизмов
  • 8. Методы выделения чистых культур микроорганизмов
  • 9. Бактериологический метод диагностики инфекционных заболеваний
  • 10. Техника посева микроорганизмов
  • 11. Особенности культивирования анаэробных бактерий
  • III. План практической работы
  • IV. Примеры ситуационных задач
  • Диагностике инфекционных заболеваний.
  • I этап.
  • II этап. Цель: накопление чистой культуры
  • III этап. Цель: идентификация исследуемой культуры
  • IV этап.
  • Тема 2: Физиология бактерий. Питание, дыхание, размножение, метаболизм и ферментные системы бактерий. Бактериологический метод диагностики инфекционных заболеваний (2-й день).
  • I. Вопросы для самоподготовки:
  • II. Базовый текст
  • 1. Метаболизм микроорганизмов
  • 2. Ферментные системы микроорганизмов
  • 4. Механизмы питания бактерий
  • 6. Классификация бактерий по типу дыхания - биологического окисления.
  • 7. Брожение и его виды
  • 8. Условия культивирования бактерий
  • 9. Рост и размножение бактерий. Фазы размножения бактерий
  • 10. Бактериологический метод исследования. Проведение 2 этапа бактериологического метода выделения аэробов. Культуральные свойства бактерий.
  • III. План практической работы
  • 4. Заполнить таблицу « Классификация микроорганизмов по типам дыхания»
  • IV. Примеры ситуационных задач
  • Тема 3: Идентификация чистых культур. Биохимическая активность бактерий. Бактериологический метод диагностики инфекционных заболеваний (3-день).
  • 1. Проведение III этапа бактериологического метода выделения чистых культур микроорганизмов. Схема идентификации микроорганизмов
  • 2. Определение чистоты выделенной культуры
  • 3. Использование ферментативной активности бактерий для идентификации микроорганизмов
  • 4. Методы определения гликолитической активности микроорганизмов
  • 5. Методы определения протеолитической активности бактерий
  • 6. Определение окислительно-восстановительных ферментов бактерий
  • 7. Системы для биохимической идентификации бактерий
  • III. План практической работы
  • IV. Примеры ситуационных задач
  • Модуль III «Основы антибактериальной химиотерапии»
  • 2. Механизмы действия антибиотиков на микроорганизмы
  • 3. Побочное действие антибиотиков
  • 4. Механизмы антибиотикорезистентности микроорганизмов
  • 5. Методы определения чувствительности микроорганизмов к антибиотикам
  • III. План практической работы
  • IV. Примеры ситуационных задач
  • III модуль «Инфекция и инфекционный процесс»
  • Тема 2: Инфекционный процесс. Факторы патогенности бактерий. Биологический метод диагностики инфекционных заболеваний
  • Базовый текст
  • 1. Учение об инфекции. Понятия «инфекция» и «инфекционное заболевание»
  • 3. Классификации инфекционных заболеваний и форм инфекций
  • 4. Периоды и исходы инфекционного заболевания
  • 5. Патогенность и вирулентность, единицы вирулентности
  • 6. Основные факторы патогенности микроорганизмов
  • 7. Микробные токсины
  • 8. Биологический метод диагностики инфекционных заболеваний
  • III. План практической работы
  • IV. Примеры ситуационных задач
  • III модуль «Экология микроорганизмов. Основы санитарной микробиологии»
  • Тема 3:Микрофлора организма человека. Санитарно-бактериологическое исследование воды, воздуха, почвы
  • I. Вопросы для самоподготовки:
  • II.Базовый текст
  • 2. Функции нормальной микрофлоры организма человека
  • 3. Методы определения микрофлоры организма человека
  • 4. Определение понятия дисбактериоз и причины его возникновения
  • 5. Принципы диагностики и лечения дисбактериоза
  • 6. Предмет санитарной микробиологии и требования, предъявляемые к санитарно-показательным микроорганизмам
  • 7. Микрофлора воды, воздуха и почвы
  • 8. Методы определения санитарно-показательных микроорганизмов воды, воздуха и почвы
  • III. План практической работы
  • IV. Примеры ситуационных задач
  • Теоретические вопросы для рубежного контроля знаний
  • Перечень практических навыков
  • Литература
  • 8. Методы выделения чистых культур микроорганизмов

    Культивирование микроорганизмов, помимо состава питательной сре­ды, сильно зависит от физических и химических факторов (температура, кислотность, аэрация, свет и т. д.). При этом количественные показатели каждого из них неодинаковы и определяются особенностями метаболиз­ма каждой группы бактерий. Существуют методы культивирования мик­роорганизмов на твердых и в жидких питательных средах в аэробных, анаэробных и других условиях.

    Методы выделения чистых культур аэробных микроорганизмов. Для того, чтобы получить изолированные колонии, при нанесении материал распределяют так, чтобы клетки бактерий были удалены друг от друга. Для получения чистой культуры используют две основные группы методов:

    а) мето­ды, основанные на принципе механического разделения микроорганизмов;

    б) методы, основанные на биологиче­ских свойствах микроорганизмов.

    Методы, основанные на принципе механического разде­ления микроорганизмов

    Рассев шпателем по Дригальскому . Берут 3 чашки Петри с питательной средой. На 1-ю чашку петлей или пипеткой наносят кап­лю исследуемого материала и растирают шпателем по всей поверхности питательного агара. Затем шпатель пе­реносят во 2-ю чашку и втирают оставшуюся на шпателе культуру в поверхность питательной среды. Далее шпа­тель переносят в 3-ю чашку и аналогичным образом про­изводят посев. На 1-й чашке вырастает максимальное количество колоний, на 3-й - минимальное. В зависимо­сти от содержания микробных клеток в исследуемом ма­териале на одной из чашек вырастают отдельные коло­нии, пригодные для выделения чистой культуры микро­организма.

    Метод Пастера (метод разведений). Из исследуемого материала готовят ряд последовательных, чаще десятикратных серийных разведений в жидкой стерильной среде или физиологическом растворе в пробирках. Далее высевают материал газоном по 1 мл из каждой пробирки. Предполагают, что в какой-то из пробирок останется количество микроорганизмов, поддающихся подсчету при высеве на пластинчатые среды. Этот метод дает возможность подсчитать микробное число в исследуемом материале. (Микробное число - количество колоний на последней чашке с ростом микроорганизмов, умноженное на степень разведения материала).

    Получение чистой культуры методом рассева в глубине среды Метод Коха (метод заливок). Исследуемый материал в небольшом количестве вносят в пробирку с расплавленным и охлажденным до 45-50°С МПА, перемешивают, затем каплю питательной среды с разведенным материалом переносят во вторую пробирку с расплавленным МПА и т.д. Количество разведений зависит от предполагаемой численности микроорганизмов в исследуемом материале. Приготовленные разведения мик­робов выливают из пробирок в стерильные чашки Петри, обозначенные номерами, соответствующими номерам про­бирок. После застудневания среды с исследуемым материалом чашки помещают в термостат. Количество колоний в чашках с питательной средой уменьшается по мере разведения мате­риала.

    Рассев петлей (посев штрихами). Берут одну чашку Петри с питательным агаром и делят ее на 4 сектора, проводя разграничительные линии на внешней стороне дна чашки. Исследуемый ма­териал петлей вносят в первый сектор и проводят ею па­раллельные линии по всему сектору на расстоянии одна от другой около 5 мм. Этой же петлей, не изменяя ее положения по отношению к агару, проводят такие же линии на других секторах чашки. В том месте, где на агар попало большое количество микробных клеток, рост микроорганизмов будет в виде сплошного штриха. На секторах с небольшим количеством клеток вырастают отдельные колонии. Кроме того, можно наливать разведен­ные растворы смешанной культуры на поверхность твер­дых сред в чашках.

    Метод фильтрации. Основан на пропускании исследуемого материала через специальные фильтры с определенным диаметром пор и разделении содержа­щихся микроорганизмов по величине. Этот метод при­меняется главным образом для очистки вирусов от бак­терий, а также при получении фагов и токсинов (в фильтрате - чистый фаг, очищенный токсин).

    Методы, основанные на биологических свойствах мик­роорганизмов

    Создание оптимальных условий для размножения

      Создание оптимального температурного режима для избирательного подавления размножения сопутствующей микрофлоры при низкой температуре и получения культур психрофильных или термофильных бактерий. Большинство микробов неплохо развиваются при 35-37°С, иерсинии хорошо растут при 22°С, лептоспиры культивируют при 30°С. Термофильные бактерии растут при температурах, лежащих за пределами температурных режимов прочих сопутствующих видов бактерий (так, кампилобактер культивируют при 42°С).

      Создание условий для аэробиоза или анаэробиоза. Большинство микроорганизмов хорошо растут в присутствии атмосферного кислорода. Облигатные анаэробы растут в условиях, исключающих присутствие атмосферного кислорода (возбудители столбняка, ботулизма, бифидумбактерии, бактероиды и др.). Микроаэрофильные микроорганизмы растут только при низком содержании кислорода и повышенном содержании СО 2 (кампилобактер, геликобактер).

      Метод обогащения. Исследуемый материал за­севают на элективные питательные среды, способствую­щие росту определенного вида микроорганизмов.

    Метод Шукевича. Исследуемый ма­териал засевают в конденсационную воду скошенного агара. При размножении подвижные формы микробов из конденсационной воды распространяются по агару, как бы «вползают» на его поверхность. Отсевая верхние края культуры в конденсационную воду свежескошенного агара и повторяя это несколько раз, можно получить чистую культуру. Так, для выделения культуры Proteus vulgaris, Clostridium tetani материал засевают в конденсационную воду на дне пробирки со скошенной плотной средой, не касаясь поверхности среды. Названные микроорганизмы способны давать ползучий рост (роение) на поверхности среды. Сопутствующие микробы растут в нижней части питательной среды, а протей и столбнячный микроб в виде пленки распространяются вверх и занимают всю скошенную часть агара.

    Метод прогревания. Позволяет отделить спорообразующие бациллы от неспоровых форм. Прогрева­ют исследуемый материал на водяной бане при 80°С 10-15 мин. При этом погибают вегетативные формы, а споры сохраняются и при посеве на соответствующую пи­тательную среду прорастают.

    Бактериостатический метод (метод ингибирования). Основан на различном действии некоторых химических веществ и антибиотиков на микроорганизмы. Определенные вещества угнетают рост одних микроор­ганизмов и не оказывают влияния на другие. Например, небольшие концентрации пенициллина задерживают рост грамположительных микроорганизмов и не влияют на грамотрицательные. Смесь пенициллина и стрептомици­на позволяет освободить нитчатые грибы и дрожжи от бактериальной флоры. Серная кислота (5% раствор) быстро убивает боль­шинство микроорганизмов, а туберкулезная палочка вы­живает в этих условиях. Необходимо учитывать, что селективные факторы часто включены в состав среды в бактериостатических концентрациях, поэтому сопутствующие микрооорганизмы остаются жизнеспособными и при переносе колоний исследуемой культуры на обычные среды могут быть причиной получения смешанной культуры.

  • 4. Дифференциально-диагностические методы окраски микробов. Окраска по Граму, механизм и техника окраски.
  • 5. Морфология бактерий. Отличия прокариотов от эукариотов. Основные формы бактерий.
  • 6. Структура и функции поверхностных образований бактериальной клетки. Капсула. Методы выяв­ления.
  • 7. Структура и функции клеточной стенки грамположительных и грамотрицательных бактерий. Фор­мы бактерий с дефектами клеточной стенки.
  • 8. Цитоппазматические структуры бактерий, функции, методы выявления. Кислотоустойчивые мик­робы. Метод окраски.
  • 9. Покоящиеся формы микробов. Спорообразование у бактерий, стадии, методы выявления спор.
  • 10. Подвижность бактерий, методы выявления подвижности.
  • 11. Принципы систематики микробов. Систематическое положение микробов. Таксономические кате­гории. Понятие и критерии вида.
  • 12-16. Систематическое положение и морфология спирохет, актиномицетов, микоплазм, риккетсий, хламидий. Методы изучения.
  • 18. Дыхательный аппарат бактерий. Пути биологического окисления. Классификация микробов по этому признаку
  • 19 Способы размножения микробов. Механизм и фазы клеточного деления.
  • 20. Характеристика бактериологического метода исследования
  • 21. Питательные среды для аэробов и анаэробов. Требования, предъявляемые к питательным сре­дам, классификация.
  • 22. Методы выделения чистых культур аэробов.
  • 23. Методы выделения чистых культур анаэробов.
  • 24. Идентификация микроорганизмов морфологическая, культуральная серологическая, биологиче­ская, генетическая.
  • 26. Генетический аппарат бактерий (хромосомы, плазмиды) характеристика бактериальных транспозонов. Биологическая роль плазмид.
  • 27. Виды изменчивости бактерий. Фенотипическая и генотипическая изменчивость. Понятие о популяционной изменчивости.
  • 28. Мутационная изменчивость. Генетические рекомбинации. Практическое значение изменчивости микроорганизмов. Понятие о генной инженерии и биотехнилогии.
  • 29. Молекулярная диагностика. Цель. Задачи. Методы.
  • 30. Молекулярная гибридизация. Полимеразная цепная реакция.
  • 31. Учение об инфекции. Условия возникновения инфекционного процесса. Отличительные признаки инфекционных заболеваний. Типы инфекций.
  • 32. Роль микроорганизма в инфекционном процессе. Патогенность и вирулентность Факторы патогенности.
  • 33. Роль макроорганизма, физической и социальной среды в инфекционном процессе.
  • 34. Биологический метод исследования задачи, оценка этапы.
  • 35. Химиотерапия и химиопрофилактика. Антибиотики определение классификация.
  • 36. Механизм действия антибиотиков.
  • 37. Побочное действие антибиотиков.
  • 38. Устойчивость микроорганизмов к антибиотикам.
  • 39 Методы изучения чувствительности микробов к антибиотикам.
  • 40. Экология микроорганизмов. Типы экологических связей.
  • 41. Характеристика нормальной микрофлоры человека и ей биологическая роль. Методы изучения. Гнотобиология. Дисбактериоз. Причины развития, принципы коррекции.
  • 42 Стерилизация, дезинфекция. Определение понятий, методы проведения.
  • 43. Асептика, антисептика. Определение понятий. Способы проведения.
  • 22. Методы выделения чистых культур аэробов.

    Процесс выделения чистой культуры можно разделить на несколько этапов.

    Первый этап. Из исследуемого материала готовят мазок, окрашивают его по Граму или другим методом и микрсгскопиру-ют. Для посева исследуемый материал в случае необходимости разводят в пробирке со стерильным изотоническим раствором хлорида натрия. Одну каплю приготовленного разведения нано­сят петлей на поверхность питательного агара в чашку Петри и тщательно втирают шпателем в среду, равномерно распределяя материал по всей ее поверхности. После посева чашку перевора­чивают дном кверху, подписывают и помещают в термостат при температуре 37 °С на 18-24 ч.

    Второй этап. Просматривают чашки и изучают изолиро­ванные колонии, обращая внимание на их форму, величину, кон­систенцию и другие признаки. Для определения морфологии кле­ток и их тинкториальных свойств из части исследуемой колонии готовят мазок, окрашивают по Граму и микроскопируют. Для выделения и накопления чистой культуры одну изолированную колонию или несколько различных изолированных колоний пе­ресевают в отдельные пробирки со скошенным агаром или какой-либо другой питательной средой. Для этого часть колонии сни­мают петлей, не задевая соседние колонии.

    Третий этап: Отмечают характер роста выделенной чис­той культуры. Визуально чистая культура характеризуется однородным ростом. При микроскопическом исследовании окрашен­ного мазка, приготовленного из такой культуры, в нем обнару­живаются морфологически и тинкториально однородные клетки. Очнако в случае выраженного полиморфизма, присущего неко­торым видам бактерий, в мазках из чистой культуры наряду с типичными встречаются и другие формы клеток.

    23. Методы выделения чистых культур анаэробов.

    Питательные среды для анаэробов должны отвечать следующим основным требованиям: 1) удовлетворять питательным потребно­стям; 2) обеспечивать быстрый рост микроорганизмов; 3) быть адек­ватно редуцированными

    Посевы с целью выделения анаэробной микрофлоры, как спо-рообразующей (клостридии), так и неспорообразующей (вейлонеллы, бактероиды, пептококки), производят в строго анаэроб­ных условиях. Первичные посевы делают на обогатительные сре­ды (тиогликолевую, Китта - Тароцци), затем пересевают на плотные среды: сахарный кровяной агар в чашки Петри, в высо­кий столбик сахарного питательного агара или другие среды для получения изолированных колоний. После инкубации посевов в анаэробных условиях из образовавшихся колоний бактерий го­товят мазки, окрашивают, микроскопируют, а затем пересевают на среду Китта - Тароцци и агаровые среды для выделения чистой культуры.

    При выделении спорообразующих анаэробных бактерий (кло­стридии) первоначальные посевы прогревают на водяной бане при температуре 80 °С в течение 20 мин для уничтожения веге­тативных клеток посторонней микрофлоры, которая может при­сутствовать в исследуемом материале

    24. Идентификация микроорганизмов морфологическая, культуральная серологическая, биологиче­ская, генетическая.

    Идентификация – это определение систематического положения, выделение из какого-либо источника до уровня вида или варианта.

    25. Биохимический метод идентификации: определение протеолитических. сахаролитических, липолитических свойств, выявление гемолизинов и оксидоредуктаз. Использование автоматических микробиологических анализаторов .

    Этот метод предусматривает изучение ферментативной деградации различных субстратов (углеводов, аминокислот и белков, мочевины, перекиси водорода и др.) с образованием промежуточных и конечных

    продуктов.

    Карбогидразы - ферменты, разлагающие углеводы. Определяя карбогидразы, выявляют т.н. сахаролитические свойства микробов. С этой целью используют следующие среды:

    а) среды Гисса (жидкие и полужидкие с индикаторами). В качестве последних используют реактив Андреде, бромтимоловый синий или ВР О ферментативной активности бактерий судят по изменению цвета среды и образованию газа;

    б) дифференциально-диагностические среды с лактозой (Эндо, Левина. Плоскирева и др.);

    в) полиуглеводные среды (типа Олькеницкого, Клиглера и др.).

    Протеазы -ферменты, разлагающие белки:

    а) исследуемая культура может расщеплять белки субстрата с образованием пептона, альбумоз, аминокислот. Этот процесс идет за счет ферментов-протеиназ и пептидаз. Для выявления указанных ферментов исследуемую культуру засевают на ряд сред: свернутая сыворотка, столбик желатина (разжижение в положительных случаях), молочный агар в чашке Петри (в положительных случаях вокруг колоний появляются зоны помутнения);

    б)расщепление аминокислот микробами может идти путем декарбоксилирования, либо путем дезаминирования. В первом случае из той или иной аминокислоты образуются амины, которые выявляются либо методом элекрофореза. либо по подщелачиванию среды. О наличии дезаминаз у микроба судят по образованию аммиака в среде как результат процесса дезаминирования аминокислоты;

    в) расщепление аминокислоты триптафана за счет действия фермента триптафаназы сопровождается образованием индола. Последний выявляется с помощью бумажки, смоченной щавелевой кислотой и укрепленной под пробкой над питательной средой. В положительныхслучаях бумажка краснеет;

    г) для выявления ферментов расщепления серосодержащих аминокислот (цистин, цистеин) ставят пробы на H2S, как Продукт расщепления этих аминокислот десульфуразами. Наличие H2S выявляется и в среде Олькеницкого;

    д) для выявления уреазы - фермента, расщепляющего мочевину, в питательную среду нейтральной рН добавляют мочевину и индикатор. В положительных случаях среда изменяет цвет за счет сдвига рН в щелочную сторону в связи с образованием аммиака. Липазы - ферменты разложения липидов и липоидов. Чаще всего определяют лецитиназу посевом на желточный агар. Лецитиназа расщепляет лецитин на фосфохолин и диглицерид. В этих случаях при росте колоний вокруг них появляются опалесцирующие зоны, отражающие лецитиназную активность.

    Ферменты-токсины : Гемолизины - ферменты расщепления фосфолипидной мембраны эритроцитов. Они выявляются посевом культуры на кровяной агар (5-10%). Различают b-гемолиз или полный гемолиз, когда образуются зоны просветления вокруг колоний, а-гемолиз, неполный гемолиз, при наличии зон зеленого цвета вокруг колоний. Отсутствие гемолиза обозначается как д-гемолиз.

    Цитотоксины - ферменты, оказывающие токсический эффект на клетки мишени. Например, цитотоксичность токсина анаэробных микрорганизмов определяют на культуре клеток. С этой целью 1 г материала (испражнения или др.) разводят в фосфатном буфере 1:10 масса/объем, центрифугируют ЗО мин при 4ООО об/мин. Супернатант фильтруют на фильтре 2О нм, вносят в монослой культуры клеток МакКоя и инкубируют при 37°С 24-48 часов до достижения токсического эффекта.

    Иммунохимическое определение продукции токсинов: используется, как правило, иммуноферментный метод определения многих экзотоксинов -дифтерийного, холерного, стафилококкового и др. Для этого применяются тест-системы на основе моноклональных антител к определенному экзотоксину.

    Ппазмокоагулаза - фермент, свертывающий плазму крови животных. Определяют в пробирочной реакции. В1 мл цитратной плазмы кролика или человека (цельной или разведенной в 2 и 4 раза физраствором) размешивают петлю суточной агаровой культуры микроба. Смесь инкубируют в термостате при 37°С. В положительных случаях через 2-4 часа плазма свертывается (появляется сгусток). Лецитиназа - см. выше.

    Оксидо-редуктазы:

    1. Определение оксидаз . На фильтровальную бумагу, смоченную 1% раствором тетраметилпарафенилендиамина, петлей наносят полосы испытуемой культуры. В положительном случае появляется фиолетовое окрашивание полос (в течение 1 мин).

    2. Определение каталазы . Каплю 3% раствора перекиси водорода наносят на предметное стекло и туда вносят петлю испытуемой культуры. В присутствии каталазы образуются пузырьки кислорода.

    3. Определение дегидраз . О наличии дегидраз судят по редуцирующей способности микроба, т.е. способности восстанавливать некоторые органические красители (например, 1% водный раствор метиленовой синьки). К столбику сахарного агара (донатор водорода) добавляют краситель (акцептор водорода) и засевают микробную культуру уколом. В положительных случаях растущий на такой среде микроб ее обесцвечивает.

    4. Определение спектра короткоцепочечных жирных кислот (КЦЖК), Анаэробные микроорганизмы продуцируют промежуточные продукты, включающие короткоцепочечные жирные кислоты и спирты, спектр (профиль) которых различен у разных видов микроорганизмов и позволяет проводить идентификацию микроорганизмов до уровня рода. Наиболее часто исследуют уксусную, пропионовую, бутиловую, изобутиловую, валериановую, изовалериановую, капроновую и изокапроновую кислоты. Для определения КЦЖК используют метод газожидкостной хроматографии. Идентифицируют такие микроорганизмы как актиномицеты, пролионибактерии, эубактерии, бифидобактерии, клостридии.

    В последние годы а бактериологических лабораториях применяются коммерческие тест-системы для быстрой биохимической идентификации (определение биохимической активности разных групп микроорганизмов): например, 2О тестов для энтеробактэрий и ЗО тестов для анаэробов. Схема идентификации включает следующие этапы:

    Колонии ---- Приготовление ---- Внесение ----- Инкубация ---- Учет(+ -) ---- Интер-

    суспензии суспензии 4 часа 37°С претация в среду

    В качестве материала для идентификации используют хорошо изолированную колонию на чашке или чистую культуру в пробирке, из которой готовят суспензию в концентрации стандарта оптической плотности N4, затем по 55 мкл суспензии вносят в лунки со средами данной тест-системы. Планшета со стрипами инкубируется при 37°С 4 часа. Учет может осуществляться автоматически (используя прибор "АТВ") или визуально Результат биохимической реакции оценивают в виде "+" или "-" и вносят о референс-таблицу, в которой положительному результату соответствует численное выражение, в результате чего получается определенный числовой профиль, соответствующий специапьно разработанному индексу аналитического профиля, позволяющему быстро идентифицировать тот ипи иной

    микроорганизм.

    Метод Пастера (метод предельных разведений). Заключается в том, что из исследуемого материала делают ряд последовательных разведений в жидкой питательной среде. Для этого каплю посевного материала вносят в пробирку со стерильной жидкой средой, из нее каплю переносят в следующую пробирку и так засевают до 8…10 пробирок. С каждым разведением количество микробных клеток, попадающих в среду, будет уменьшаться и можно получить такое разведение, в котором во всей пробирке со средой будет находиться только одна микробная клетка, из которой разовьется чистая культура микроорганизма. Так как в жидких средах микробы растут диффузно, т.е. легко распределяются во всей среде, то изолировать одну микробную клетку от другой трудно. Таким образом, метод Пастера не всегда обеспечивает получение чистой культуры. Поэтому в настоящее время этот метод используется, главным образом, для предварительного уменьшения концентрации микроорганизмов в материале перед посевом его в плотную среду для получения изолированных колоний.

    Методы механического разделения микроорганизмов с использованием плотных питательных сред. К таким методам относятся метод Коха и метод Дригальского.

    Метод Коха (метод глубинного посева). Исследуемый материал вносят бактериологической петлей или пастеровской пипеткой в пробирку с расплавленной плотной питательной средой. Равномерно размешивают содержимое пробирки, вращая ее между ладонями. Каплю разведенного материала переносят во вторую пробирку, из второй – в третью и т.д. Содержимое каждой пробирки, начиная с первой, выливают в стерильные чашки Петри. После застывания среды в чашках, их помещают в термостат для культивирования.

    Для выделения анаэробных микроорганизмов по методу Коха необходимо ограничить доступ кислорода к культуре. С этой целью поверхность глубинного посева в чашке Петри заливают стерильной смесью парафина и вазелина (1:1). Можно также оставлять посевной материал, тщательно перемешанный с агаризованной средой, непосредственно в пробирке. Ватную пробку при этом заменяют резиновой или заливают поверхность агара смесью парафина и вазелинового масла. Чтобы извлечь выросшие колонии анаэробных микроорганизмов, пробирки слегка нагревают, быстро вращая над пламенем горелки. Агар, прилегающий к стенкам, расплавляется, и столбик легко выскальзывает в подготовленную чашку Петри. Далее столбик с агаром разрезают стерильным скальпелем, колонии извлекают стерильной петлей или стерильной капиллярной рубкой и переносят в жидкую среду.

    Метод Дригальского основан на механическом разделении микробных клеток на поверхности плотной питательной среды в чашках Петри. Каждая микробная клетка, фиксируясь в определенном месте, начинает размножаться, образуя колонию.

    Для посева по методу Дригальского используют несколько чашек Петри, залитых плотной питательной средой. На поверхность среды вносят каплю исследуемого материала. Затем с помощью стерильного шпателя эту каплю распределяют по всей питательной среде (посев газоном).

    Посев также можно проводить штрихом, используя бактериологическую петлю. Этим же шпателем или петлей осуществляют посев во вторую, третью и т.д. чашки. Как правило, в первой чашке после культивирования посева появляется рост микробов в виде сплошного налета, в последующих чашках содержание микроорганизмов снижается и образуются изолированные колонии, из которых отсевом можно легко выделить чистую культуру.

    Таким образом, в первых секторах получается сплошной рост, а вдоль последующих штрихов вырастут обособленные колонии, представляющие собой потомство одной клетки.

    В целях экономии сред и посуды можно пользоваться одной чашкой, разделив ее на сектора, и последовательно засевать их штрихом (метод истощающего штриха). Для этого материал берут петлей и проводят ею ряд параллельных штрихов сначала по поверхности первого сектора, а затем последовательно оставшимися на петле клетками засевают все другие сектора. При каждом последующем штрихе происходит уменьшение количества засеваемых клеток.

    Метод выделения чистых культур с помощью химических веществ используется при изолировании культур микроорганизмов, устойчивых к определенным химическим веществам. Например, с помощью этого метода можно выделить чистую культуру туберкулезных микобактерий, устойчивых к действию кислот, щелочей и спирта. В этом случае исследуемый материал перед посевом заливают 15 % раствором кислоты или антиформином и выдерживают в термостате в течение 3…4 часов. После воздействия кислоты или щелочи клетки туберкулезной палочки остаются живыми, а все другие микроорганизмы, содержащиеся в исследуемом материале, погибают. После нейтрализации кислоты или щелочи обработанный материал высевают на плотную среду и получают изолированные колонии возбудителя туберкулеза.

    Для выделения бактерий в виде чистых культур известно сравнительно мало методов. Чаще всего это делают путем изолирования отдельных клеток на твердой питательной среде, используя метод посева штрихом или разлива по чашкам небольшого количества жидкой культуры (метод предельных разведений ). Однако получение отдельной колонии не всегда гарантирует чистоту культуры, поскольку колонии могут вырасти не только из отдельных клеток, но и из их скоплений. Если микроорганизмы образуют слизь, то часто к ней прикрепляются посторонние формы. Для очистки предпочтительно использовать неселективную среду (МПА), поскольку на ней лучше растут контаминирующие микроорганизмы и их легче обнаружить.

    Получение изолированных колоний на твердой питательной среде достигается либо путем рассева взвеси микроорганизмов шпателем (метод Коха ), либо с помощью бактериологической петли (метод истощающего штриха ). В результате механического разобщения клеток микроорганизмов каждая из них может дать начало изолированной колонии одного вида микробов.

    Рассев шпателем (метод Коха) производят в следующей последовательности:

    1) на поверхность питательной среды в чашке № 1 наносят стерильной пипеткой каплю накопительной культуры и распределяют ее стерильным шпателем;

    2) шпатель достают, чашку быстро закрывают и переносят шпатель в чашку № 2, не стерилизуя его. Имитируют распределение культуры по всей поверхности среды, прикасаясь к ее поверхности той же стороной шпателя, которой ранее распределяли пробу;

    3) точно те же действия проводят и в чашке № 3, после чего шпатель стерилизуют;

    4) засеянные чашки помещают в термостат и инкубируют при оптимальной температуре.

    Через определенное время чашки достают из термостата и изучают рост микроорганизмов. Обычно в чашке № 1 наблюдают сплошной рост бактерий, в последующих чашках отмечают колонии.

    Рассев петлей (метод истощающего штриха) предполагает высев бактериологической петлей из накопительной культуры на поверхность агаризованной среды в чашках Петри. На первом этапе петлей с культурой наносят ряд параллельных штрихов на агаризованной среде (рисунок 4.2, А ). Петлю стерилизуют, остужают о незасеянную часть агаризованной среды и проводят серию штрихов в направлении, перпендикулярном первым (рисунок 4.2, Б ). Затем петлю вновь стерилизуют, остужают и штрихи наносят в направлении В (рисунок 4.2), а после очередной стерилизации – в направлении Г (рисунок 4.2). Чашки помещают в термостат и через определенное время учитывают результаты. Обычно на штрихах А и Б вырастает большое число колоний (иногда сплошной рост), тогда как на штрихах В и Г формируются изолированные колонии.


    Рисунок 4.2 – Схема рассева бактерий штрихами для получения изолированных колоний

    Последовательные разведения в твердой среде – самый простой способ посева по чашкам, который заключается в том, что после инокуляции пробы в пробирку со стерильным расплавленным и охлажденным агаром, среду перемешивают, выливают в чашку Петри и дают ей застыть. Для получения хорошо изолированных колоний готовят ряд последовательных десятикратных разведений и по 1 мл проб вносят сразу в чашку, добавляют 15–20 мл расплавленной агаризованной среды и смешивают, покачивая чашку. Иногда отдельные колонии оказываются погруженными в агар и извлечь их можно только механически. Плохо и то, что бактерии некоторое время находятся в среде при температуре расплавленного агара.

    77288 0

    Культуральные свойства бактерий

    К культуральным (или макроморфологическим) свойствам относятся характерные особенности роста микроорганизмов на плотных и жидких питательных средах. На поверхности плотных питательных сред, в зависимости от посева, микроорганизмы могут расти в виде колоний, штриха или сплошного газона.

    Колонией называют изолированное скопление клеток одного вида, выросших из одной клетки (клон клеток). В зависимости от того, где растет микроорганизм (на поверхности плотной питательной среды или в толще ее), различают поверхностные, глубинные и донные колонии.

    Колонии, выросшие на поверхности среды, отличаются разнообразием: они видоспецифичны и их изучение используется для определения видовой принадлежности исследуемой культуры.

    При описании колоний учитывают следующие признаки:
    1) форму колонии - округлая, амебовидная, ризоидная, неправильная и т. д.;

    2) размер (диаметр) колонии - очень мелкие (точечные) (0,1-0,5 мм), мелкие (0,5-3 мм), средних размеров (3-5 мм) и крупные (более 5 мм в диаметре);

    3) поверхность колонии - гладкая, шероховатая, складчатая, морщинистая, с концентрическими кругами или радиально исчерченная;

    4) профиль колонии - плоский, выпуклый, конусовидный, кратерообразный и т. д.;

    5) прозрачность - тусклая, матовая, блестящая, прозрачная, мучнистая;

    6) цвет колонии (пигмент) - бесцветная или пигментированная (белая, желтая, золотистая, красная, черная), особо отмечают выделение пигмента в среду с ее окрашиванием;

    7) край колонии - ровный, волнистый, зубчатый, бахромчатый и т. д.;

    8) структуру колонии - однородная, мелко- или крупнозернистая, струйчатая; край и структуру колонии определяют с помощью лупы или на малом увеличении микроскопа, поместив чашку Петри с посевом на столик микроскопа крышкой вниз;

    9) консистенцию колонии; определяют прикасаясь к поверхности петлей: колония может быть плотной, мягкой, врастающей в агар, слизистой (тянется за петлей), хрупкой (легко ломается при соприкосновении с петлей).

    Глубинные колонии чаще всего похожи на более или менее сплющенные чечевички (форма овалов с заостренными концами), иногда комочки ваты с нитевидными выростами в питательную среду. Образование глубинных колоний часто сопровождается разрывом плотной среды, если микроорганизмы выделяют газ.

    Донные колонии имеют обычно вид тонких прозрачных пленок, стелющихся по дну.

    Особенности колонии могут изменяться с возрастом, они зависят от состава среды и температуры культивирования.

    Рост микроорганизмов на жидких питательных средах учитывают, используя четырех-семисуточные культуры, выращенные в стационарных условиях.

    В жидких питательных средах при росте микроорганизмов наблюдается помутнение среды, образование пленки или осадка.

    При росте на полужидких (0,5-0,7 % агара) питательных средах подвижные микробы вызывают выраженное помутнение, неподвижные формы растут только по ходу посева уколом в среду.

    Нередко рост микробов сопровождается появлением запаха, пигментацией среды, выделением газа. Характерный запах культур некоторых видов бактерий связан с образованием различных эфиров (уксусноэтилового, уксусноамилового и др.), индола, меркаптана, сероводорода, скатола, аммиака, масляной кислоты.

    Способность образовывать пигменты присуща многим видам микроорганизмов. Химическая природа пигментов разнообразна: каротиноиды, антоцианы, меланины. Если пигмент нерастворим в воде, окрашивается только культуральный налет; если же он растворим, окрашивается и питательная среда. Считается, что пигменты защищают бактерии от губительного действия солнечных лучей, поэтому в воздухе так много пигментированных бактерий, кроме того, пигменты участвуют в обмене веществ этих микроорганизмов.

    В природе существуют так называемые фосфоресцирующие бактерии, культуры которых светятся в темноте зеленовато-голубоватым или желтоватым светом. Такие бактерии встречаются главным образом в речной или морской воде. К светящимся бактериям - фотобактериям -относятся аэробные бактерии (вибрионы, кокки, палочки).

    Выделение чистых культур микроорганизмов

    Чистой культурой называют такую культуру, которая содержит микроорганизмы одного вида. Выделение чистых культур бактерий -обязательный этап бактериологического исследования в лабораторной практике, в изучении микробной загрязненности различных объектов окружающей среды, и в целом при любой работе с микроорганизмами.

    Исследуемый материал (вода, почва, воздух, пищевые продукты или другие объекты) обычно содержит ассоциации микробов.

    Выделение чистой культуры позволяет изучить морфологические, культуральные, биохимические, антигенные и другие признаки, по совокупности которых определяется видовая и типовая принадлежность возбудителя, т. е. производится его идентификация.

    Для выделения чистых культур микроорганизмов используют методы, которые можно разделить на несколько групп:
    1. Метод Пастера - последовательное разведение исследуемого материала в жидкой питательной среде до концентрации одной клетки в объеме (имеет историческое значение).

    2. Метод Коха («пластинчатые разводки») - последовательное разведение исследуемого материала в расплавленном агаре (температура 48-50 С), с последующим разливом в чашки Петри, где агар застывает. Высевы делают, как правило, из трех-четырех последних разведений, где бактерий становится мало и в дальнейшем при росте на чашках Петри появляются изолированные колонии, образующиеся из одной исходной материнской клетки. Из изолированных колоний в глубине агара получают чистую культуру бактерий пересевом на свежие среды.

    3. Метод Шукевича - применяется для получения чистой культуры протея и других микроорганизмов, обладающих «ползущим» ростом. Посев исследуемого материала производят в конденсационную воду у основания скошенного агара. Подвижные микробы (протей) способны подниматься вверх по скошенному агару, неподвижные формы остаются расти внизу, на месте посева. Пересевая верхние края культуры, можно получить чистую культуру.

    4. Метод Дригальского - широко применяется в бактериологической практике, при этом исследуемый материал разводят в пробирке стерильным физиологическим раствором или бульоном. Одну каплю материала вносят в первую чашку и стерильным стеклянным шпателем распределяют по поверхности среды. Затем этим же шпателем (не прожигая его в пламени горелки) делают такой же посев во второй и третьей чашках.

    С каждым посевом бактерий на шпателе остается все меньше и меньше и, при посеве на третью чашку, бактерии будут распределяться по поверхности питательной среды отдельно друг от друга. Через 1-7 суток выдерживания чашек в термостате (в зависимости от скорости роста микроорганизмов) на третьей чашке каждая бактерия дает клон клеток, образуя изолированную колонию, которую пересевают на скошенный агар с целью накопления чистой культуры.

    5. Метод Вейнберга. Особые трудности возникают при выделении чистых культур облигатных анаэробов. Если контакт с молекулярным кислородом не вызывает сразу же гибели клеток, то посев производят по методу Дригальского, но после этого чашки сразу помещают в анаэростат. Однако чаще пользуются методом разведения. Сущность его заключается в том, что разведение исследуемого материала проводят в расплавленной и охлажденной до 45-50 оС агаризированной питательной среде.

    Делают 6-10 последовательных разведений, затем среду в пробирках быстро охлаждают и заливают поверхность слоем смеси парафина и вазелинового масла, чтобы помешать проникновению воздуха в толщу питательной среды. Иногда питательную среду после посева и перемешивания переносят в стерильные трубки Бурри или капиллярные пипетки Пастера, концы которых запаивают. При удачном разведении в пробирках, трубках Бурри, пипетках Пастера вырастают изолированные колонии анаэробов. Чтобы изолированные колонии хорошо были видны, используют осветленные питательные среды.

    Для извлечения изолированных колоний анаэробов пробирку слегка нагревают, вращая ее над пламенем, при этом агар, прилегающий к стенкам, плавится и содержимое пробирки в виде агарового столбика выскальзывает в стерильную чашку Петри. Столбик агара разрезают стерильным пинцетом и извлекают колонии петлей. Извлеченные колонии помещают в жидкую среду, благоприятную для развития выделяемых микроорганизмов. Агаризированную среду из трубки Бурри выдувают, пропуская газ через ватную пробку.

    6. Метод Хангейта. Когда хотят получить изолированные колонии бактерий с особенно высокой чувствительностью к кислороду (строгие аэробы) используют метод вращающихся пробирок Хангейта. Для этого расплавленную агаризированную среду засевают бактериями при постоянном токе через пробирку инертного газа, освобожденного от примеси кислорода. Затем пробирку закрывают резиновой пробкой и помещают горизонтально в зажим, вращающий пробирку; среда при этом равномерно распределяется по стенкам пробирки и застывает тонким слоем. Применение тонкого слоя в пробирке, заполненной газовой смесью, позволяет получить изолированные колонии, хорошо видимые невооруженным глазом.

    7. Выделение отдельных клеток с помощью микроманипулятора. Микроманипулятор - прибор, позволяющий с помощью специальной микропипетки или микропетли извлекать одну клетку из суспензии. Эту операцию контролируют под микроскопом. На предметном столике микроскопа устанавливают влажную камеру, в которую помещают препарат «висячая капля». В держателях операционных штативов закрепляют микропипетки (микропетли), перемещение которых в поле зрения микроскопа осуществляется с микронной точностью благодаря системе винтов и рычагов. Исследователь, глядя в микроскоп, извлекает отдельные клетки микропипетками и переносит их в пробирки со стерильной жидкой средой для получения клона клеток.

    Л.В. Тимощенко, М.В. Чубик