Как устроен телескоп. Как устроены телескопы различных оптических схем? Телескоп виды и принцип работы

Оптический телескоп - инструмент, для сбора и фокусировки электромагнитного излучения оптического диапазона. Телескоп увеличивает блеск и видимый угловой размер наблюдаемого объекта. Проще говоря, телескоп позволяет изучить более мелкие детали объекта наблюдения, за счет увеличения количества приходящего света. В телескоп можно наблюдать глазом (визуальные наблюдения), а так же можно получать фотографии или видео. Для определения характеристик телескопа основными параметрами являются - диаметр (апертура) и фокусное расстояние объектива, а также фокусное расстояние и поле зрения окуляра. Телескоп устанавливают на монтировку, что позволяет сделать процесс наблюдения более комфортным. Монтировка дает возможность упростить процесс наведения и слежения за объектом наблюдения.

По оптической схеме телескопы делятся на:

Линзовые (рефракторы или диоптрические) — в качестве объектива используется линза или система линз.
- Зеркальные (рефлекторы или катаптрические) — в качестве объектива используется вогнутое зеркало.
- Зеркально-линзовые телескопы (катадиоптрические) — в качестве объектива используется сферическое зеркало, а линза, система линз или мениск служит для компенсации аберраций.

Первым астрономом, которому удалось построить телескоп, был итальянец Галилео Галилей. Созданный телескоп был скромных размеров, длина трубы 1245 мм, диаметр объектива 53 мм, окуляр 25 диоптрий. Его оптическая схема была не совершенна, и увеличение составляло всего 30 крат. Но при всех своих недостатках, имея более чем скромные размеры, телескоп позволил совершить ряд замечательных открытий: кратеры и горы на Луне, четыре спутника Юпитера, пятна на Солнце, смена фаз Венеры, странные «придатки» у Сатурна (кольцо Сатурна, которое впоследствии открыл и описал Гюйгенс), сияние в Млечном пути состоит из звезд.

Портрет Галилея, разбитый объектив от первого телескопа в центре виньетки и его телескопы на музейной подставке, хранящиеся в Музее истории науки (Флоренция) .

Классические оптические схемы.

Схема Галилея.

В 1609 году итальянец Галилео Галилей построил первый телескоп. У него объективом явлась одна собирающая линза, а окуляром служила рассеивающая линза, в результате чего изображение получалось не перевернутым (Земным). Основными недостатками такой оптической схемы являются очень сильная хроматическая аберрация и малое поле зрения. До сих пор такую схему все еще используют в театральных биноклях и любительских телескопах собственного изготовления.

Схема Кеплера

В 1611 году немецкий астроном Иоганн Кеплер усовершенствовал телескоп Галилея. Он заменил в окуляре рассеивающую линзу собирающей. Его изменения позволили увеличить поле зрения и вынос зрачка. Такая оптическая схема даёт перевернутое действительное изображение. По сути, все последующие телескопы-рефракторы являются трубами Кеплера. К недостаткам системы относится сильная хроматическая аберрация, которую до создания ахроматического объектива устраняли путём уменьшения относительного отверстия телескопа.

Схема Ньютона

В 1667 году английский астроном Исаак Ньютон предложил схему, в которой свет падает на главное зеркало, а затем плоское диагональное зеркало, расположенное вблизи фокуса, отклоняет пучок света за пределы трубы. Главное зеркало имеет параболическую форму, а в случае, когда относительное отверстие не слишком большое, форма зеркала сферическая.

Схема Грегори

В 1663 году шотландский астроном Джеймс Грегори в книге Optica Promota предложил следующую схему. Вогнутое параболическое главное зеркало отражает свет на вогнутое эллиптическое вторичное зеркало, после чего свет, проходя через отверстие в главном зеркале, попадает на окуляр. Расстояние между зеркалами больше фокусного расстояния главного зеркала, поэтому изображение получается прямое (в отличие от перевёрнутого в телескопе Ньютона). Вторичное зеркало обеспечивает относительно большое увеличение благодаря удлинению фокусного расстояния.

Схема Кассегрена

В 1672 году француз Лоран Кассегрен предложил схему двухзеркального объектива телескопа. Вогнутое главное зеркало (в оригинале параболическое) отражает свет на выпуклое, гиперболическое вторичное зеркало меньшего размера, затем свет попадает в окуляр. По классификации Максутова схема относится к так называемым предфокальным удлиняющим — то есть вторичное зеркало расположено между главным зеркалом и его фокусом и полное фокусное расстояние объектива больше, чем у главного. Объектив при том же диаметре и фокусном расстоянии имеет почти вдвое меньшую длину трубы и несколько меньшее экранирование, чем у Грегори. Система неапланатична, то есть несвободна от аберрации комы. Имеет много как зеркальных модификаций, включая апланатичный Ричи-Кретьен, со сферической формой поверхности вторичного (Долл-Кирхем) или первичного зеркала, так и зеркально-линзовых.

Схема Максутова — Кассегрена

В 1941 году советский ученый, оптик Д. Д. Максутов нашёл, что сферическую аберрацию сферического зеркала можно компенсировать мениском большой кривизны. Найдя удачное расстояние между мениском и зеркалом, Максутов сумел избавиться от комы и астигматизма. Кривизну поля, как и в камере Шмидта, можно устранить, установив вблизи фокальной плоскости плоско-выпуклую линзу — так называемую линзу Пиацци-Смита. Модифицировав систему Кассегрена Максутов создал, одну из самых распространённых систем в астрономии.

Схема Ричи-Кретьена

В начале 1910-х годов американский и французский астрономы Джордж Ричи и Анри Кретьен изобрели оптическую схему телескопа-рефрактора, разновидность системы Кассегрена. Особенность системы Ричи — Кретьена, отличающая её от большинства других вариантов системы Кассегрена — отсутствие комы третьего порядка и сферической аберрации. С другой стороны, велик высокоугловой астигматизм и кривизна поля; последнее, впрочем, исправляется простым двухлинзовым корректором поля. Как и прочие кассегрены, имеет короткий корпус, вторичное зеркало, которое в случае системы Ричи — Кретьена является гиперболическим и препятствует появлению комы и способствует широкому полю. Данная схема является самой распространенной в научных телескопах. Наиболее известным телескопом, использующим схему Ричи-Кретьена, является Космический телескоп «Хаббл».

С момента создания первого телескопа в 1611 году астрономы делали открытия, наблюдая визуально. С прогрессом в науке прогрессировали и методы наблюдения. После 1920 года приемником изображения стали фотопластинки. Глаз хоть и является самым сложным органом, но по чувствительности он значительно уступает фотопластинкам.

Следующим прорывом стало создание ПЗС-матрицы после 1980 года. По чувствительности они значительно превосходили фотопластинки, и были гораздо удобнее в использовании. Во всех современных телескопах приемниками изображения являются ПЗС матрицы. ПЗС матрица или CCD-матрица специализированная аналоговая интегральная микросхема, состоящая из светочувствительных фотодиодов, выполненная на основе кремния, использующая технологию ПЗС — приборов с зарядовой связью. Полученные изображения обрабатываются в цифровом виде на компьютере. Для получения четких снимков без цифровых шумов матрицу охлаждают до -130°С.

На территории России самым большим телескопом является БТА («большой телескоп азимутальный») .

Главное зеркало (ГЗ) имеет форму параболоида вращения и фокусное расстояние 24 м. Диаметр зеркала - 605 см. Масса главного зеркала 42 тонны. Масса телескопа 850 тонн. Высота телескопа 42 м. Высота башни 53 м. Диаметр кабины первичного фокуса - 2 м. Здесь находятся сменные оптические приборы, а также приводной механизм для передвижений линзового корректора и гиперболического вторичного зеркала. Лабораторные тесты показывают, что 90% энергии сконцентрированы в кружке диаметром 0.8". Диаметр изображения определяется микроклиматом в помещении башни, а также температурой зеркала. При благоприятных условиях (малое температурное отличие между ГЗ, воздухом в подкупольном помещении и рядом с башней), размер звездных изображений ограничен атмосферной турбуленцией. Оптическая схема БТА обеспечивает выполнение наблюдений в первичном фокусе (светосила f/4) и в двух фокусах Несмита (светосила f/30). Время перестройки оптической схемы составляет около 3-4 минут, что делает возможным выполнение в течение одной ночи наблюдений с помощью аппаратуры, установленной в разных фокусах телескопа.

На данный момент самым крупным телескопом из построенных является Very Large Telescope VLT (очень большой телескоп) .

Комплекс телескопов был построен Европейской Южной Обсерваторией (ESO). Это комплекс из четырёх отдельных 8,2-метровых и четырёх вспомогательных 1,8-м оптических телескопов, объединённых в одну систему. Комплекс расположен в Республике Чили на горе Серро Параналь, высотой 2635 метров над уровнем моря. Основные 8.2 метровые телескопы размещены в компактных терморегулируемых башнях, которые вращаются синхронно с самими телескопами. Такая схема минимизирует любые искажающие влияния внешних условий при наблюдениях, например, оптические искажения, вносимые турбулентностью воздуха в трубе телескопа, которые обычно появляются из-за изменений температуры и ветра. Первый из Основных Телескопов, Анту, начал регулярные научные наблюдения 1 апреля 1999 г. В настоящее время функционируют все четыре Основных и все четыре Вспомогательных Телескопа. Башни Основных Телескопов VLT: высота 2850 см, диаметр 2900 см. Хотя четыре 8.2 метровые Основных Телескопа могут использоваться в комбинации, образуя VLTI, они преимущественно используются для индивидуальных наблюдений; в интерферометрическом режиме они работают лишь ограниченное число ночей в году. Но благодаря четырем специализированным Вспомогательным Телескопам (AT) меньшего размера, VLTI может функционировать каждую ночь.

Очень большой телескоп оснащен большим арсеналом приемников изображений, что позволяет ему проводить наблюдения волн разного диапазона — от ближнего ультрафиолетового до среднего инфракрасного. Система адаптивной оптики, установленная на телескопе, практически полностью исключает влияние турбулентной атмосферы в инфракрасном диапазоне. Полученные изображения в этом диапазоне получаются более четкими, чем полученные телескопом Хаббла.

Строение телескопа

В XX веке астрономия сделала множество шагов в изучении нашей Вселенной, но эти шаги были бы невозможны без использования таких сложных приборов, как телескопы, история которых насчитывает не одну сотню лет. Эволюция телескопа происходила в несколько этапов, и именно о них я постараюсь рассказать.

С давних времен человечество тянуло узнать, что же находится там, на небе, за пределами Земли и невидимого человеческому глазу. Величайшие ученые древности, такие как Леонардо да Винчи, Галилео Галилей, предпринимали попытки создать прибор, позволяющий заглянуть в глубины космоса и приоткрыть завесу тайны Вселенной. С тех пор произошло множество открытий в области астрономии и астрофизики. Каждый человек знает, что такое телескоп, но не все знают, как давно и кем был изобретен первый телескоп, и как он был устроен.

Телескоп – прибор, предназначенный для наблюдения небесных тел.

В частности, под телескопом понимается оптическая телескопическая система, применяемая не обязательно для астрономических целей.

Существуют телескопы для всех диапазонов электромагнитного спектра:

    оптические телескопы

    радиотелескопы

    рентгеновские телескопы

    гамма-телескопы

Оптические телескопы

Телескоп представляет собой трубу (сплошную, каркасную или ферму), установленную на монтировке, снабжённой осями для наведения на объект наблюдения и слежения за ним. Визуальный телескоп имеет объектив и окуляр. Задняя фокальная плоскость объектива совмещена с передней фокальной плоскостью окуляра. В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения. В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом. Телескоп фокусируется при помощи фокусера (фокусированного устройства). телескоп космос астрономия

По своей оптической схеме большинство телескопов делятся на:

    Линзовые (рефракторы или диоптрические) – в качестве объектива используется линза или система линз.

    Зеркальные (рефлекторы или катоптрические) – в качестве объектива используется вогнутое зеркало.

    Зеркально-линзовые телескопы (катадиоптрические) – в качестве объектива используется сферическое зеркало, а линза, система линз или мениск служит для компенсации аберраций.

Радиотелескопы

Для исследования космических объектов в радиодиапазоне применяют радиотелескопы. Основными элементами радиотелескопов являются принимающая антенна и радиометр – чувствительный радиоприемник, перестраиваемый по частоте, и принимающая аппаратура. Поскольку радиодиапазон гораздо шире оптического, для регистрации радиоизлучения используют различные конструкции радиотелескопов, в зависимости от диапазона. В длинноволновой области (метровый диапазон; десятки и сотни мегагерц) используют телескопы, составленные из большого числа (десятков, сотен или, даже, тысяч) элементарных приемников, обычно диполей. Для более коротких волн (дециметровый и сантиметровый диапазон; десятки гигагерц) используют полу- или полноповоротные параболические антенны. Кроме того, для увеличения разрешающей способности телескопов, их объединяют в интерферометры. При объединении нескольких одиночных телескопов, расположенных в разных частях земного шара, в единую сеть, говорят о радио интерферометрии со сверхдлинной базой (РСДБ). Примером такой сети может служить американская система VLBA (англ. Very Long Baseline Array). С 1997 по 2003 год функционировал японский орбитальный радиотелескоп HALCA (англ. Highly Advanced Laboratory for Communications and Astronomy), включенный в сеть телескопов VLBA, что позволило существенно улучшить разрешающую способность всей сети. Российский орбитальный радиотелескоп Радиоастрон также планируется использовать в качестве одного из элементов гигантского интерферометра.

Рентгеновский телескоп

Рентгеновский телескоп- телескоп, предназначенный для наблюдения удаленных объектов в рентгеновском спектре. Для работы таких телескопов обычно требуется поднять их над атмосферой Земли, непрозрачной для рентгеновских лучей. Поэтому телескопы размещают на высотных ракетах или на ИСЗ.

Оптическая схема

Из-за большой энергии рентгеновские кванты практически не преломляются в веществе (следовательно, тяжело изготовить линзы) и не отражаются при любых углах падения, кроме самых пологих (около 90 градусов).

Рентгеновские телескопы могут использовать несколько методов для фокусирования лучей. Наиболее часто используются телескопы Вольтера (с зеркалами скользящего падения), кодирование апертуры и модуляционные (качающиеся) коллиматоры.

Ограниченные возможности рентгеновской оптики приводят к более узкому полю зрения по сравнению с телескопами, работающими в диапазонах УФ и видимого света.

Часто изобретение первого телескопа приписывают Гансу Липпершлею из Голландии, 1570-1619 годы, однако почти наверняка он не являлся первооткрывателем. Скорее всего, его заслуга в том, что он первый сделал новый прибор телескоп популярным и востребованным. А также именно он подал в 1608 году заявку на патент на пару линз, размещенный в трубке. Он назвал устройство подзорной трубой. Однако его патент был отклонен, поскольку его устройство показалось слишком простым.

Задолго до него Томас Диггес, астроном, в 1450 году попытался увеличить звезды с помощью выпуклой линзы и вогнутого зеркала. Однако у него не хватило терпения доработать устройство, и полу-изобретение вскоре было благополучно забыто. Сегодня Диггеса помнят за описание гелиоцентрической системы.

К концу 1609 года небольшие подзорные трубы, благодаря Липпершлею, стали распространены по всей Франции и Италии. В августе 1609 года Томас Харриот доработал и усовершенствовал изобретение, что позволило астрономам рассмотреть кратеры и горы на Луне.

Большой прорыв произошел, когда итальянский математик Галилео Галилей узнал о попытке голландца запатентовать линзовую трубу. Вдохновленный открытием, Галлей решил сделать такой прибор для себя. В августе 1609 года именно Галилео изготовил первый в мире полноценный телескоп. Сначала, это была всего лишь зрительная труба – комбинация очковых линз, сегодня бы ее назвали рефрактор. До Галилео, скорее всего, мало кто догадался использовать на пользу астрономии эту развлекательную трубку. Благодаря прибору, сам Галилей открыл горы и кратеры на Луне, доказал сферичность Луны, открыл четыре спутника Юпитера, кольца Сатурна и сделал множество других полезных открытий.

Сегодняшнему человеку телескоп Галилео не покажется особенным, любой десятилетний ребенок может легко собрать гораздо лучший прибор с использованием современных линз. Но телескоп Галилео был единственным реальным работоспособным телескопом на тот день с 20-кртным увеличением, но с маленьким полем зрения, немного размытым изображением и другими недостатками. Именно Галилео открыл век рефрактора в астрономии – 17 век.

Время и развитие науки позволяло создавать более мощные телескопы, которые давали видеть много больше. Астрономы начали использовать объективы с большим фокусным расстоянием. Сами телескопы превратились в большие неподъемные трубы по размеру и, конечно, были не удобны в использовании. Тогда для них изобрели штативы. Телескопы постепенно улучшали, дорабатывали. Однако его максимальный диаметр не превышал нескольких сантиметров – не удавалось изготавливать линзы большого размера.

К 1656 году Христиан Гюйенс сделал телескоп, увеличивающий в 100 раз наблюдаемые объекты, размер его был более 7 метров, апертура около 150 мм. Этот телескоп уже относят к уровню сегодняшних любительских телескопов для начинающих. К 1670-х годам был построен уже 45-метровый телескоп, который еще больше увеличивал объекты и давал больший угол зрения.

Но даже обычный ветер мог служить препятствием для получения четкого и качественного изображения. Телескоп стал расти в длину. Первооткрыватели, пытаясь выжать максимум из этого прибора, опирались на открытый ими оптический закон – уменьшение хроматической аберрации линзы происходит с увеличением ее фокусного расстояния. Чтобы убрать хроматические помехи, исследователи делали телескопы самой невероятной длины. Эти трубы, которые назвали тогда телескопами, достигали 70 метров в длину и доставляли множество неудобств в работе с ними и настройке их. Недостатки рефракторов заставили великие умы искать решения к улучшению телескопов. Ответ и новый способ был найден: собирание и фокусировке лучей стала производится с помощью вогнутого зеркала. Рефрактор переродился в рефлектор, полностью освободившийся от хроматизма.

Заслуга эта целиком и полностью принадлежит Исааку Ньютону, именно он сумел дать новую жизнь телескопам с помощью зеркала. Его первый рефлектор имел диаметр всего четыре сантиметра. А первое зеркало для телескопа диаметром 30 мм он сделал из сплава меди, олова и мышьяка в 1704 году. Изображение стало четким. Кстати, его первый телескоп до сих пор бережно хранится в астрономическом музее Лондона.

Но еще долгое время оптикам никак не удавалось делать полноценные зеркала для рефлекторов. Годом рождения нового типа телескопа принято считать 1720 год, когда англичане построили первый функциональный рефлектор диаметром в 15 сантиметров. Это был прорыв. В Европе появился спрос на удобоносимые, почти компактные телескопы в два метра длиной. О 40-метровых трубах рефракторов стали забывать.

Двухзеркальная система в телескопе предложена французом Кассегреном. Реализовать свою идею в полной мере Кассегрен не смог из-за отсутствия технической возможности изобретения нужных зеркал, но сегодня его чертежи реализованы. Именно телескопы Ньютона и Кассегрена считаются первыми "современными" телескопами, изобретенными в конце 19 века. Кстати, космический телескоп Хаббл работает как раз по принципу телескопа Кассегрена. А фундаментальный принцип Ньютона с применением одного вогнутого зеркала использовался в Специальной астрофизической обсерватории в России с 1974 года. Расцвет рефракторной астрономии произошел в 19 веке, тогда диаметр ахроматических объективов постепенно рос. Если в 1824 году диаметр был еще 24 сантиметра, то в 1866 году его размер вырос вдвое, в 1885 году диаметр стал составлять 76 сантиметров (Пулковская обсерватория в России), в к 1897 году изобретен иеркский рефрактор. Можно посчитать, что за 75 лет линзовый объектив увеличивался со скоростью одного сантиметра в год.

К концу 18 века компактные удобные телескопы пришли на замену громоздким рефлекторам. Металлические зеркала тоже оказались не слишком практичны – дорогие в производстве, а также тускнеющие от времени. К 1758 году с изобретением двух новых сортов стекла: легкого – крон и тяжелого – флинта, появилась возможность создания двухлинзовых объективов. Чем благополучно и воспользовался ученый Дж. Доллонд, который изготовил двухлинзовый объектив, впоследствии названный доллондовым.

После изобретения ахроматических объективов победа рефрактора была абсолютная, оставалось лишь улучшать линзовые телескопы. О вогнутых зеркалах забыли. Возродить их к жизни удалось руками астрономов-любителей. Вильям Гершель, английский музыкант, в 1781 году открывший планету Уран. Его открытию не было равным в астрономии с глубокой древности. Причем Уран был открыт с помощью небольшого самодельного рефлектора. Успех побудил Гершеля начать изготовление рефлекторов большего размера. Гершель собственноручно в мастерской сплавлял зеркала из меди и олова. Главный труд его жизни – большой телескоп с зеркалом диаметром 122 см. Это диаметр его самого большого телескопа. Открытия не заставили себя ждать, благодаря этому телескопу, Гершель открыл шестой и седьмой спутники планеты Сатурн. Другой, ставший не менее известным, астроном-любитель английский землевладелец лорд Росс изобрел рефлектор с зеркалом с диаметром в 182 сантиметра. Благодаря телескопу, он открыл ряд неизвестных спиральных туманностей. Телескопы Гершеля и Росса обладали множеством недостатков. Объективы из зеркального металла оказались слишком тяжелыми, отражали лишь малую часть падающего на них света и тускнели. Требовался новый совершенный материал для зеркал. Этим материалом оказалось стекло. Французский физик Леон Фуко в 1856 году попробовал вставить в рефлектор зеркалом из посеребренного стекла. И опыт удался. Уже в 90-х годах астроном-любитель из Англии построил рефлектор для фотографических наблюдений со стеклянным зеркалом в 152 сантиметра в диаметре. Очередной прорыв в телескопостроении был очевиден.

Этот прорыв не обошелся без участия русских ученых. Я.В. Брюс прославился разработкой специальных металлических зеркал для телескопов. Ломоносов и Гершель, независимо друг от друга, изобрели совершенно новую конструкцию телескопа, в которой главное зеркало наклоняется без вторичного, тем самым уменьшая потери света.

Немецкий оптик Фраунгофер поставил на конвейер производство и качество линз. И сегодня в Тартуской обсерватории стоит телескоп с целой, работающей линзой Фраунгофера. Но рефракторы немецкого оптика также были не без изъяна – хроматизма.

И лишь к концу 19 века изобрели новый метод производства линз. Стеклянные поверхности начали обрабатывать серебряной пленкой, которую наносили на стеклянное зеркало путем воздействия виноградного сахара на соли азотнокислого серебра. Эти принципиально новые линзы отражали до 95% света, в отличие от старинных бронзовых линз, отражавших всего 60% света. Л. Фуко создал рефлекторы с параболическими зеркалами, меняя форму поверхности зеркал. В конце 19 века Кросслей, астроном-любитель, обратил свое внимание на алюминиевые зеркала. Купленное им вогнутое стеклянное параболическое зеркало диаметром 91 см сразу было вставлено в телескоп. Сегодня телескопы с подобными громадными зеркалами устанавливаются в современных обсерваториях. В то время как рост рефрактора замедлился, разработка зеркального телескопа набирала обороты. С 1908 по 1935 года различные обсерватории мира соорудили более полутора десятков рефлекторов с объективом, превышающим иеркский. Самый большой телескоп установлен в обсерватории Моунт-Внльсон, его диаметр 256 сантиметров. И даже этот предел соврем скоро превзойден вдвое. В Калифорнии смонтирован американский рефлектор-гигант, на сегодня его возраст более пятнадцати лет.

Более 30 лет назад в 1976 году ученые СССР построили 6-метровый телескоп БТА – Большой Телескоп Азимутальный. До конца 20 века БРА считался крупнейшим в мире телескопом Изобретатели БТА были новаторами в оригинальных технических решениях, таких как альт-азимутальная установка с компьютерным ведением. Сегодня это новшества применяются практически во всех телескопах-гигантах. В начале 21 века БТА оттеснили во второй десяток крупных телескопов мира. А постепенная деградация зеркала от времени – на сегодня его качество упало на 30% от первоначального – превращает его лишь в исторический памятник науке.

К новому поколению телескопов относятся два больших телескопа 10-метровых близнеца KECK I и KECK II для оптических инфракрасных наблюдений. Они были установлены в 1994 и 1996 году в США. Их собрали благодаря помощи фонда У. Кека, в честь которого они и названы. Он предоставил более 140 000 долларов на их строительство. Эти телескопы размером с восьмиэтажный дом и весом более 300 тонн каждый, но работают они с высочайшей точностью. Принцип работы – главное зеркало диаметром 10 метров, состоящее из 36 шестиугольных сегментов, работающих как одно отражательное зеркало. Установлены эти телескопы в одном из оптимальных на Земле мест для астрономических наблюдений – на Гаваях, на склоне потухшего вулкана Мануа Кеа высотой 4 200 м. К 2002 году эти два телескопа, расположенных на расстоянии 85 м друг от друга, начали работать в режиме интерферометра, давая такое же угловое разрешение, как 85-метровый телескоп. История телескопа прошла долгий путь – от итальянских стекольщиков до современных гигантских телескопов-спутников. Современные крупные обсерватории давно компьютеризированы. Однако любительские телескопы и многие аппараты, типа Хаббл, все еще базируются на принципах работы, изобретенных Галилеем.

Применение

Современные телескопы позволяют астрономам "заглянуть" далеко за пределы нашей Вселенной. Для точного наведения приборов на объект используются сложные программные алгоритмы, которые неожиданно очень пригодились и онкологам.

При наблюдении за далекими галактиками и во время поисков новых небесных тел ученым приходится рассчитывать сложные траектории космических объектов с тем, чтобы в определенный момент времени телескоп "смотрел" именно на тот участок неба, где далекая планета, комета или астероид будут видны наиболее отчетливо.

Подобные расчеты производятся с помощью сложнейших, специально написанных программ для компьютеров, управляющих телескопами.

А британские ученые, занимающиеся проблемами онкологии, в частности изучением рака молочной железы, более чем успешно использовали "астрономические" компьютерные программы для анализа образцов раковых опухолей груди.

Сотрудники Кембриджского университета (University of Cambridge) изучали 2 000 образцов раковых опухолей для совершенствования методики, так называемой персонализации лечения рака. Такая методика предполагает точное знание максимального числа индивидуальных особенностей опухоли у того или иного пациента для выбора наиболее эффективных химиотерапевтических препаратов.

С помощью обычных методов ученым пришлось бы затратить на анализ 2 000 образцов не менее недели – но использование "астрономических" программ позволило выполнить эту работу менее чем за 1 сутки.

Для внесения коррективов в программу и ее максимальную адаптацию для нужд онкологии кембриджские ученые планируют в ближайшее время провести анализ 20 000 образцов опухолей груди, полученных у пациенток из разных стран Европы.

Принцип работы телескопа заключается не в увеличении объектов, а в сборе света. Чем больше размер главного светособирающего элемента - линзы или зеркала, тем больше света в него попадет. Важно, что именно общее количество собранного света в конечном счете определяет уровень детализации видимого - будь то удаленный ландшафт или кольца Сатурна. Хотя увеличение, или сила для телескопа тоже важно, оно не имеет решающего значения в достижении уровня детализации.

Телескопы постоянно изменяются и совершенствуются, но принцип работы остается одним и тем же.

Телескоп собирает и концентрирует свет

Чем больше выпуклая линза или вогнутое зеркало, тем больше света в него попадает. А чем больше света попадает в , тем более удаленные объекты он позволяет увидеть. Человеческий глаз обладает своей собственной выпуклой линзой (хрусталиком), но эта линза очень мала, поэтому света она собирает довольно мало. Телескоп позволяет увидеть больше именно потому, что его зеркало способно собрать больше света, чем человеческое око.

Телескоп фокусирует световые лучи и создает изображение

Для того, чтобы создать четкое изображение, линзы и зеркала телескопа собирают пойманные лучи в одну точку - в фокус. Если свет не собрать в одну точку, изображение окажется размытым.

Виды телескопов

Телескопы можно разделить по спосбу работы со светом на "линзовые", "зеркальные" и комбинированные - зеркально-линзовые телескопы.

Рефракторы - преломляющие телескопы. Свет в таком телескопе собирается с помощью двояковыпуклой линзы (собственно, она и является объективом телескопа). Среди любительских инструментов наиболее распространены ахроматы обычно двухлинзовые, но бывают и более сложные. Ахроматический рефрактор состоит из двух линз - собирающей и рассеивающей, что позволяет компенсировать сферические и хроматические аберрации - проще говоря, искажения потока света при проходе через линзу.

Немного истории:

В рефракторе Галилея (созданном в 1609 году) использовались две линзы для того, чтобы собрать максимум звездного света. и позволить человеческому глазу его увидеть. Свет, проходя через сферическое зеркало, формирует картинку. Сферическая линза Галилея делает картинку нечеткой. К тому же такая линза разлагает свет на цветовые составляющие, из-за чего вокруг светящегося объекта образуется размытая цветная область. Поэтому выпукаля сферическая собирает звездный свет, а следующая за ней вогнутая линза превращает собранные световые лучи обратно в параллельные, что позволяет вернуть четкость и ясность наблюдаемому изображению.

Рефрактор Кепплера (1611)

Любая сферическая линза преломляет световые лучи, расфокусирует их и размывет картинку. Сферическая линза Кепплера обладает меньшей кривизной и большим фокусным расстоянием, чем линза Галилея. Поэтому точки фокусировки лучей, проходящих через такую линзу, оказываются ближе друг к другу, что позволяет снизить, но не убратть совершенно, искажения изображения. Вообще-то Кепплер сам не создал такого телескопа, но предложенные им улучшения оказали сильное влияние на дальнейшее развитие рефракоторов.

Ахроматический рефрактор

Ахроматический рефрактор создан на основе телескопа Кепплера, но вместо одной сферической линзы в нем используются две линзы различной кривизны. Свет, проходящий через две эти линзы, фокусируется в одной точке, т.е. этот способ позволяет избежать и хроматической, и сферической абберации.

  • Телескоп Sturman F70076
    Простой и легкий рефрактор для начинающих с диаметром объектива 50 мм. Увеличение - 18*,27*,60*,90*. Комплектуется двумя окулярами - 6 мм и 20 мм. Можно использовать как трубу, поскольку он не переворачивает изображение. На азимутальном кронштейне.
  • >Телескоп Konus KJ-7
    60-мм длиннофокусный телескоп-рефрактор на немецкой (экваториальной) монтировке. Максимальное увеличение - 120 крат. Подойдет детям и начинающим астрономам.
  • Телескоп MEADE NGC 70/700mm AZ
    Классический рефрактор с диаметром 70 мм и максимальным полезным увеличением до 250*. Поставляется с тремя окулярами, призмой и монтировкой. Позволяет наблюдать почти все планеты Солнечной системы и слабые звезды до 11,3 звездной величины.
  • Телескоп Synta Skywatcher 607AZ2
    Классический рефрактор на азимутальной монтировке AZ-2 на алюминиевoм штативе и возможностью микромерного наведения телескопа по высоте. Диаметр объектива 60-мм, максимальное увеличение 120 крат, проницающая способность 11 (звездные величины). Вес 5 кг.
  • Телескоп Synta Skywatcher 1025AZ3
    Легкий рефрактор с альт-азимутальной монтировкой AZ-3 на алюминиевом штативе c микромерным наведением телескопа по обеим осям. Может использоваться в качестве телеобъектива к большинству зеркальных камер для съемки удаленных объектов. Диаметр объектива 100 мм, фокусное расстояние 500 мм, проницающая способность 12 (звездные величины). Вес 14 кг.

Рефлектор - это любой телескоп, объектив которого состоит только из зеркал. Рефлекторы являются отражающими телескопами, и изображение в таких телескопах оказывается с другой стороны от оптической системы, чем в рефракторах.

Немного истории

Рефлекторный телескоп Грегори (1663)

Джеймс Грегори ввел совершенно новую технологию в изготовление телескопов, придумав телескоп с параболическим главным зеркалом. Изображение, которое можно наблюдать в подобный телескоп, оказывается свободным и от сферических, и от хроматических аберраций.

Рефлектор Ньютона (1668)

Ньютон использовал металлическое главное зеркало для сбора света и следующее за ним направляющее зеркало, которое перенаправляло световые лучи к окуляру. Таким образом удалось справиться с хроматической аберрацией - ведь вместо линз в этом телескопе используются зеркала. Но картинка все равно получилась размытой из-за сферического искривления зеркала.

До сих пор часто рефлектором называется именно телескоп, сделанный по схеме Ньютона. К сожалению, и он не свободен от аберраций. Чуть в сторону от оси и уже начинает проявляться кома (неизопланатизм) - аберрация связанная с неравностью увеличения разных кольцевых зон апертуры. Кома приводит к тому, что пятно рассеивания выглядит как проекция конуса - острой и самой яркой частью к центру поля зрения, тупой и округлой в сторону от центра. Размер пятна рассеивания пропорционален удалению от центра поля зрения и пропорционален квадрату диаметра апертуры. Поэтому особенно сильно проявление комы в так называемых "быстрых" (светосильных) Ньютонах на краю поля зрения.

Ньютоновские телескопы очень популярны и сегодня: они очень просты и дешевы в изготовлении, а значит, средний уровень цен на них гораздо ниже, чем на соответствующие рефракторы. Но сама конструкция накладывает на такой телескоп некоторые ограничения: искажения лучей, проходящих через диагональное зеркало, заметно ухудшают разрешающую способность такого телескопа, а при увеличении диаметра объектива пропорционально увеличивается длинна трубы. В результате телескоп становится слишком большим, да и поле зрения при длинной трубе становится меньше. Собственно, рефлекторы с диаметром больше 15 см практически не производятся, т.к. недостатков у таких приборов будет больше, чем достоинств.

  • Телескоп Synta Skywatcher 1309EQ2
    Рефлектор с диаметром объектива 130 мм на экваториальной монтировке. Максимальное увеличение 260. Проницательная способность 13.3
  • Телескоп F800203M STURMAN
    Рефлектор с диаметром объектива 200 мм на экваториальной монтировке. Поставляется с двумя окулярами, лунным фильтром, штативом и видоискателям.
  • Телескоп Meade системы Ньютона 6 LXD-75 f/5 с пультом EC
    Классический ньютоновский рефлектор с диаметром объектива 150 мм и полезным увеличением до 400 крат.Телескоп для любителей астрономии, ценящих большой световой диаметр и большую светосилу. Монтировка с электронным приводом и часовым ведением позволяет проводить астрофотосъемку с длинными выдержками.

Зеркально-линзовые (катадиоптрические) телескопы используют как линзы, так и зеркала, за счет чего их оптическое устройство позволяет достичь великолепного качества изображения с высоким разрешением, при том, что вся конструкция состоит из очень коротких портативных оптических труб.

Параметры телескопов

Диаметр и увеличение

При выборе телескопа важно знать о диаметре объектива, разрешении, увеличении и качеству конструкции и составляющих.

Количество света, собираемого телескопа, напрямую зависит от диаметра (D) главного зеркала или линзы. Количество света, проходящего через объектив, пропорционально его площади.

Кроме диаметра, для характеристики объектива важна величина относительного отверстия (А), равная отношению диаметра к фокусному расстоянию (его еще называют светосилой).

Относительным фокусом называют величину, обратную величине относительного отверстия.

Разрешение - это способность отображения деталей - т.е. чем больше разрешение, тем лучше изображение. Телескоп с высоким разрешением способен разделить два удаленных близких объекта, в то время как в телескоп с низким разрешением будет виден только один, смешанный из двух, объект. Звезды являются точечными источниками света, поэтому наблюдать их сложно, и в телескопе можно увидеть только дифракционное изображение звезды в виде диска с кольцом света вокруг него. Официально предельным разрешением визуального телескопа называют минимальный угловой промежуток между парой одинаковых по яркости звезд, когда они еще видны при достаточном увеличении и отсутствие помех со стороны атмосферы раздельно. Эта величина для хороших инструментов примерно равна 120/D угловых секунд, где D - апертура телескопа (диаметр) в мм.

Увеличения телескопа должны лежать в диапазоне от D/7 до 1,5D, где D - диаметр апертуры объектива телескопа. То есть для трубы с диаметром 100 мм окуляры надо подбирать так, чтобы они обеспечивали увеличения от 15х до 150х.

При увеличении численно равном диаметру объектива, выраженному в миллиметрах, появляются первые признаки дифракционной картины, и дальнейший рост увеличения только ухудшит качество изображения, не давая различить мелкие детали. Помимо этого стоит помнить о дрожании телескопа, атмосферной турбулентности и т.д. Поэтому, при наблюдениях Луны и планет обычно не используют увеличения, превышающие 1,4D - 1,7D.В любом случае, хороший инструмент должен "вытягивать" до 1,5D без существенного ухудшения качества изображения. Лучше всего с этим справляются рефракторы, а рефлекторы с их центральным экранированием уже не могут уверенно работать на таких увеличениях, поэтому, использовать их для наблюдений Луны и планет нецелесообразно.

Верхняя граница рациональных увеличений определяется эмпирически и связана с влиянием дифракционных явлений (при росте увеличения уменьшается размер выходного зрачка телескопа - его выходная апертура). Оказалось, что наивысшее разрешение достигается при выходных зрачках менее 0.7 мм и дальнейший рост увеличения не приводит к увеличению числа подробностей. Напротив, рыхлое, мутное и неяркое изображение создает иллюзию уменьшения детализации. Увеличения большие 1,5D имеют смысл как более комфортные, особенно для людей с дефектами зрения и только по ярким контрастным объектам.

Нижняя граница разумного диапазона увеличений определяется тем, что отношение диаметра объектива к диаметру выходного зрачка (т.е. диаметру выходящего из окуляра пучка света) равно отношению их фокусных расстояний, т.е. увеличению. Если диаметр пучка, выходящего из окуляра, превысит диаметр зрачка наблюдателя, часть лучей будет обрезана, и глаз наблюдателя увидит меньше света - и меньшую часть изображения.

Таким образом вырисовывается следующий ряд рекомендуемых увеличений 2D, 1,4D, 1D, 0,7D, D/7. Увеличение в D/2..D/3 полезно для наблюдения обычных по размерам скоплений и неярких туманных объектов.

Монтировки

Монтировка телескопа - часть телескопа, на которой укрепляется его оптическая труба. Позволяет направить его в наблюдаемую область неба, обеспечивает стабильность его установки в рабочем положении, удобство выполнения наблюдений различного типа. Монтировка состоит из основания (или колонны), двух взаимно перпендикулярных осей для поворотов трубы телескопа, привода и системы отсчёта углов поворота.

В экваториальной монтировке первая ось направлена в полюс мира и называется полярной (или часовой) осью, а вторая лежит в плоскости экватора и называется осью склонений; с нею скреплена труба телескопа. При повороте телескопа вокруг 1-й оси меняется его часовой угол при постоянном склонении; при повороте вокруг 2-й оси изменяется склонение при постоянном часовом угле. Если телескоп установлен на такой монтировке, слежение за небесным телом, движущимся вследствие видимого суточного вращения неба, осуществляется путём поворота телескопа с постоянной скоростью вокруг одной полярной оси.

В азимутальной монтировке первая ось вертикальная, а вторая, несущая трубу, лежит в плоскости горизонта. Первая ось служит для поворота телескопа по азимуту, вторая - по высоте (зенитному расстоянию). При наблюдениях звёзд в телескоп, установленный на азимутальной монтировке, его необходимо непрерывно и с высокой степенью точности поворачивать одновременно вокруг двух осей, причём со скоростями, меняющимися по сложному закону.

Использованы фотографии с сайта www.amazing-space.stsci.edu

Строение телескопа

В XX веке астрономия сделала множество шагов в изучении нашей Вселенной, но эти шаги были бы невозможны без использования таких сложных приборов, как телескопы, история которых насчитывает не одну сотню лет. Эволюция телескопа происходила в несколько этапов, и именно о них я постараюсь рассказать.

С давних времен человечество тянуло узнать, что же находится там, на небе, за пределами Земли и невидимого человеческому глазу. Величайшие ученые древности, такие как Леонардо да Винчи, Галилео Галилей, предпринимали попытки создать прибор, позволяющий заглянуть в глубины космоса и приоткрыть завесу тайны Вселенной. С тех пор произошло множество открытий в области астрономии и астрофизики. Каждый человек знает, что такое телескоп, но не все знают, как давно и кем был изобретен первый телескоп, и как он был устроен.




Телескоп - прибор, предназначенный для наблюдения небесных тел.

В частности, под телескопом понимается оптическая телескопическая система, применяемая не обязательно для астрономических целей.

Существуют телескопы для всех диапазонов электромагнитного спектра:

ь оптические телескопы

ь радиотелескопы

ь рентгеновские телескопы

ь гамма-телескопы

Оптические телескопы

Телескоп представляет собой трубу (сплошную, каркасную или ферму), установленную на монтировке, снабжённой осями для наведения на объект наблюдения и слежения за ним. Визуальный телескоп имеет объектив и окуляр. Задняя фокальная плоскость объектива совмещена с передней фокальной плоскостью окуляра. В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения. В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом. Телескоп фокусируется при помощи фокусера (фокусированного устройства). телескоп космос астрономия

По своей оптической схеме большинство телескопов делятся на:

ь Линзовые (рефракторы или диоптрические) - в качестве объектива используется линза или система линз.

ь Зеркальные (рефлекторы или катоптрические) - в качестве объектива используется вогнутое зеркало.

ь Зеркально-линзовые телескопы (катадиоптрические) - в качестве объектива используется сферическое зеркало, а линза, система линз или мениск служит для компенсации аберраций.

> Виды телескопов

Все оптические телескопы группируются по виду светособирающего элемента на зеркальные, линзовые и комбинированные. Каждый тип телескопов имеет свои достоинства и недостатки, поэтому, выбирая оптику, нужно принимать во внимание следующие факторы: условия и цели наблюдения, требования к весу и мобильности, цене, уровню аберрации. Охарактеризуем наиболее популярные виды телескопов.

Рефракторы (линзовые телескопы)

Рефракторы – это первые телескопы, изобретенные человеком. В таком телескопе за сбор света отвечает двояковыпуклая линза, которая выступает в роли объектива. Ее действие строится на основном свойстве выпуклых линз – преломлении световых лучей и их сборе в фокусе. Отсюда и название - рефракторы (от латинского refract - преломлять).

Был создан в 1609 году. В нем были использованы две линзы, с помощью которых собиралось максимальное количество звездного света. Первая линза, которая выступала в роли объектива, была выпуклой и служила для сбора и фокусировки света на определенном расстоянии. Вторая линза, играющая роль окуляра, была вогнутой и использовалась для превращения сходящего светового пучка в параллельный. С помощью системы Галилея можно получить прямое, неперевернутое изображение, качество которого сильно страдает от хроматической аберрации. Эффект хроматической аберрации можно увидеть в виде ложного прокрашивания деталей и границ объекта.

Рефрактор Кеплера – более совершенная система, которая была создана в 1611 году. Здесь в роли окуляра использовалась выпуклая линза, в которой передний фокус был совмещен с задним фокусом линзы-объектива. От этого итоговое изображение было перевернутым, что не принципиально для астрономических исследований. Главное преимущество новой системы – возможность установки измерительной сетки внутри трубы в точке фокуса.

Для данной схемы также была характерна хроматическая аберрация, впрочем эффект от нее можно было нивелировать, увеличив фокусное расстояние. Именно поэтому телескопы того времени имели огромное фокусное расстояние с трубой соответствующего размера, что вызывало серьезные трудности при проведении астрономических исследований.

В начале XVIII века появился , который популярен и в сегодняшние дни. Объектив данного прибора сделан из двух линз, изготовленных их различных сортов стекла. Одна линза – собирающая, вторая – рассеивающая. Такая структура позволяет серьезно уменьшить хроматическую и сферическую аберрации. А корпус телескопа остается весьма компактным. Сегодня созданы рефракторы апохроматы, в которых влияние хроматической аберрации сведено к возможному минимуму.

Достоинства рефракторов:

  • Простая конструкция, легкость в эксплуатации, надежность;
  • Быстрая термостабилизация;
  • Нетребовательность к профессиональному обслуживанию;
  • Идеален для исследования планет, Луны, двойных звезд;
  • Превосходная цветопередача в апохроматическом исполнении, хорошая – в ахроматическом;
  • Система без центрального экранирования от диагонального или вторичного зеркала. Отсюда высокая контрастность изображения;
  • Отсутствие воздушных потоков в трубе, защита оптики от грязи и пыли;
  • Цельная конструкция объектива, не требующая регулировок со стороны астронома.

Недостатки рефракторов:

  • Высокая цена;
  • Большой вес и габариты;
  • Небольшой практический диаметр апертуры;
  • Ограниченность в исследовании тусклых и небольших объектов в далеком космосе.

Название зеркальных телескопов – рефлекторов происходит от латинского слова reflectio – отражать. Данный прибор представляет собой телескоп с объективом, в роли которого выступает вогнутое зеркало. Его задача – собирать звездный свет в единой точке. Поместив в данной точке окуляр, можно увидеть изображение.

Один из первых рефлекторов (телескоп Грегори ) был придуман в 1663 году. Данный телескоп с параболическим зеркалом был полностью избавлен от хроматических и сферических аберраций. Свет, собранный зеркалом, отражался от небольшого овального зеркала, который был закреплен перед главным, в котором было небольшое отверстие для вывода светового пучка.

Ньютон был полностью разочарован в телескопах-рефракторах, поэтому одной из главных его разработок стал телескоп-рефлектор, созданный на основе металлического главного зеркала. Он одинаково отражал свет с различными длинами волн, а сферическая форма зеркала делала прибор более доступным даже для самостоятельного изготовления.

В 1672 году ученый-астроном Лорен Кассегрен предложил схему телескопа, который внешне напоминал знаменитый рефлектор Грегори. Но усовершенствованная модель имела несколько серьезных отличий, главное из которых – выпуклое гиперболическое вторичное зеркало, которое позволило сделать телескоп более компактным и свело к минимуму центральное экранирование. Впрочем, традиционный рефлектор Кассегрена оказался нетехнологичным для массового изготовления. Зеркала со сложными поверхностями и неисправленная аберрация комы – основные причины такой непопулярности. Однако модификации данного телескопа используются сегодня по всему миру. К примеру, телескоп Ричи-Кретьена и масса оптических приборов на основе системы Шмидта-Кассегрена и Максутова-Кассегрена .

Сегодня под названием «рефлектор» принято понимать ньютоновский телескоп. Основные его характеристики – это небольшая сферическая аберрация, отсутствие какого-либо хроматизма, а также неизопланатизм – проявление комы вблизи от оси, что связано с неравностью отдельных кольцевых зон апертуры. Из-за этого звезда в телескопе выглядит не как круг, а как некая проекция конуса. При этом, тупая округлая его часть повернута от центра в сторону, а острая – напротив, к центру. Для коррекции эффекта комы используются линзовые корректоры, которые следует фиксировать перед фотокамерой или окуляром.

«Ньютоны» зачастую выполняются на монтировке Добсона, которая отличается практичностью и компактными размерами. Это делает телескоп весьма портативным устройством, несмотря на размеры апертуры.

Достоинства рефлекторов:

    Доступная цена;

  • Мобильность и компактность;
  • Высокая эффективность при наблюдении тусклых объектов в глубоком космосе: туманностей, галактик, звездных скоплений;
  • Максимально яркие и четкие изображения с минимальным искажением.

    Хроматическая аберрация сведена к нулю.

Недостатки рефлекторов:

  • Растяжка вторичного зеркала, центральное экранирование. Отсюда – низкая контрастность изображения;
  • Термостабилизация большого стеклянного зеркала занимает много времени;
  • Открытая труба без защиты от тепла и пыли. Отсюда – низкое качество изображения;
  • Требуется регулярная коллимация и юстировка, которые могут утрачиваться во время использования или перевозки.

Для исправления аберрации и построения изображения катадиоптрические телескопы применяют как зеркала, так и линзы. Набольшим спросом сегодня пользуются два типа таких телескопов: на схеме Шмидт-Кассегрена и Максутов-Кассегрена.

Конструкция приборов Шмидта-Кассегрена (ШК) состоит из сферических главного и вторичного зеркал. При этом сферическая аберрация корректируется полноапертурной пластиной Шмидта, которая установлена на входе в трубу. Однако здесь сохраняются некоторые остаточные аберрации в виде комы и кривизны поля. Их исправление возможно при использовании линзовых корректоров, которые особенно актуальны в астрофотографии.

Основные достоинства приборов такого типа касаются минимального веса и короткой трубы при сохранении внушительного диаметра апертуры и фокусного расстояния. Вместе с тем, для данных моделей не характерны растяжки крепления вторичного зеркала, а особая конструкция трубы исключает проникновение внутрь воздуха и пыли.

Разработка системы Максутова-Кассегрена (МК) принадлежит советскому инженеру-оптику Д. Максутову. Конструкция такого телескопа оснащена сферическими зеркалами, а за коррекцию аберраций отвечает полноапертурный линзовый корректор, в роли которой выступает выпукло-вогнутая линза – мениск. Именно поэтому такое оптическое оборудование часто называют менисковым рефлектором.

К достоинствам МК относится возможность корректировки практически любой аберрации с помощью подбора основных параметров. Единственное исключение – это сферическая аберрация высшего порядка. Всё это делает схему популярной среди производителей и любителей астрономии.

Действительно, при прочих равных условиях система МК дает более качественные и четкие изображения, чем схема ШК. Однако у более габаритных телескопах МК продолжительнее период термостабилизации, поскольку толстый мениск теряет температуру гораздо медленнее. Кроме того, МК более чувствительны к жесткости крепления корректора, поэтому конструкция телескопа обладает большим весом. С этим связана высокая популярность систем МК с малыми и средними апертурами и систем ШК со средними и большими апертурами.

Кроме того, разработаны катадиоптрические системы Максутова-Ньютона и Шмидта-Ньютона, конструкция которых создана специально для исправления аберраций. Они сохранили ньютоновские габариты, но вес их существенно возрос. Особенно это касается менисковых корректоров.

Достоинства

  • Универсальность. Могут использоваться и для наземных, и для космических наблюдений;
  • Повышенный уровень исправления аберрации;
  • Защита от пыли и тепловых потоков;
  • Компактные размеры;
  • Доступная цена.

Недостатки катадиоптрических телескопов:

  • Долгий период термостабилизации, что особенно актуально для телескопов с менисковым корректором;
  • Сложность конструкции, которая вызывает трудности при установке и самостоятельной юстировке.