Ароматические углеводороды - презентация. Химические свойства бензола. Получение, применение Презентация гомологи бензола свойства применение


АРЕНЫ (ароматические углеводороды) Арены или ароматические углеводороды – это соединения, молекулы которых содержат устойчивые циклические группы атомов (бензольные ядра) с замкнутой системой сопряженных связей. Ароматичность молекулы означает ее повышенную устойчивость, обусловленную делокализацией p- электронов в циклической системе. 1.Атомы углерода в sp 2 - гибридизованном состоянии образуют циклическую систему. 2.Атомы углерода располагаются в одной плоскости (цикл имеет плоское строение) Бензол С 6 Н 6 – родоначальник ароматических углеводородов. Общая формула алкинов С n H 2n-6


Строение бензола Каждый из шести атомов углерода в его молекуле находится в состоянии sp 2 - гибридизации и связан с двумя соседними атомами углерода и атомом водорода тремя σ-связями. Валентные углы равны 120°. Таким образом, скелет представляет собой правильный шестиугольник, в котором все атомы углерода и все связи С-С и С-Н лежат в одной плоскости. р-Электроны всех атомов углерода взаимодействуют между собой путем бокового перекрывания соседних 2р-АО, расположенных перпендикулярно плоскости бензольного кольца. Они образуют единое циклическое π- электронное облако, сосредоточенное над и под плоскостью кольца.


Все связи С-С в бензоле равноценны, их длина равна 0,140 нм, что соответствует промежуточному значению между длиной простой связи (0,154 нм) и двойной (0,134 нм). Это означает, что в молекуле бензола между углеродными атомами нет чисто простых и двойных связей (как в формуле, предложенной в 1865 г. немецким химиком Ф.Кекуле), а все они выровнены (делокализованы). Поэтому структурную формулу бензола изображают в виде правильного шестиугольни и кружка внутри него, обозначающего делокализованные π-связи. Строение бензола


Номенклатура Систематические названия строят из названия углеводородного радикала (приставка) и слова бензол (корень). Если радикалов два или более, их положение указывается номерами атомов углерода в кольце, с которыми они связаны. Нумерацию кольца проводят так, чтобы номера радикалов были наименьшими. Для дизамещенных бензолов R-C 6 H 4 -R используется также и другой способ построения названий, при котором положение заместителей указывают перед тривиальным названием соединения приставками: орто- (о-) заместители у соседних атомов углерода кольца, т.е. 1,2-; мета- (м-) заместители через один атом углерода (1,3-); пара- (п-) заместители на противоположных сторонах кольца (1,4-) Ароматические радикалы: C 6 H 5 - (фенил) C 6 H 5 CH 2 - (бензил)


1) положения заместителей для замещенных бензолов (например, о-, м- и п-ксилолы); 2) углеродного скелета в боковой цепи, содержащей не менее 3-х атомов углерода: 3) изомерия заместителей R, начиная с R = С 2 Н 5. Например, молекулярной формуле С 8 Н 10 соответствует 4 изомера: три ксилола CH 3 -C 6 H 4 -CH 3 (о-, м-, п-) и этилбензол C 6 H 5 -C 2 H 5. Пространственная изомерия относительно бензольного кольца в алкилбензолах отсутствует. Изомерия (структурная)


Свойства аренов Физические свойства. Бензол и его ближайшие гомологи – бесцветные жидкие вещества, нерастворимые в воде, но хорошо растворяющиеся во многих органических жидкостях. Легче воды. Огнеопасны. Бензол токсичен (вызывает заболевание крови – лейкемию) По химическим свойствам арены отличаются от предельных и непредельных углеводородов. Это объясняется особенностями строения бензольного кольца. Делокализация шести пи-электронов в циклической системе понижает энергию молекулы, что обусловливает повышенную устойчивость (ароматичность) бензола и его гомологов. Поэтому арены не склонны вступать в реакции присоединения или окисления, которые ведут к нарушению ароматичности. Для них наиболее характерны реакции, идущие с сохранением ароматической системы, а именно, реакции замещения атомов водорода, связанных с циклом. Наличие областей повышенной p-электронной плотности с двух сторон плоского ароматического цикла ведет к тому, что бензольное кольцо является нуклеофилом и в связи с этим склонно подвергаться атаке электрофильным реагентом. Таким образом, для ароматических соединений наиболее типичны реакции электрофильного замещения. Механизм электрофильного замещения обозначается символом S Е (по первым буквам английских терминов: S – substitution [замещение], E – electrophil [электрофил]). Другие реакции (присоединение, окисление) идут с трудом.








Замещение в алкилбензолах Гомологи бензола (алкилбензолы) С 6 Н 5 –R более активно вступают в реакции замещения по сравнению с бензолом. Например, при нитровании толуола С 6 Н 5 CH 3 (70°С) происходит замещение не одного, а трех атомов водорода с образованием 2,4,6-тринитротолуола. При бромировании толуола также замещаются три атома водорода. Здесь ярко проявляется взаимное влияние атомов в молекуле на реакционную способность вещества. С одной стороны, метильная группа СH 3 (за счет +I-эффекта) повышает электронную плотность в бензольном кольце в положениях 2, 4 и 6 и облегчает замещение именно в этих положениях:


Химические свойства толуола Под влиянием бензольного кольца метильная группа СH 3 в толуоле становится более активной в реакциях окисления и радикального замещения по сравнению с метаном СH 4 Толуол, в отличие от метана, окисляется в мягких условиях (обесцвечивает подкисленный раствор KMnO 4 при нагревании). Легче, чем в алканах, протекают реакции радикального замещения в боковой цепи алкилбензолов. Это объясняется тем, что на лимитирующей стадии легко (при невысокой энергии активации) образуется радикал бензил ·CH 2 -C 6 H 5. Он более стабилен, чем алкильные свободные радикалы (·СН 3, ·СH 2 R), т.к. его неспаренный электрон делокализован за счет взаимодействия с p- электронной системой бензольного кольца


II. Реакции присоединения к аренам В реакции присоединения, приводящие к разрушению ароматической структуры бензольного кольца, арены могут вступать с большим трудом. 1) Гидрирование Присоединение водорода к бензолу и его гомологам происходит при повышенной температуре и давлении в присутствии металлических катализаторов.


2) Радикальное хлорирование В условиях радикальных реакций (ультрафиолетовый свет, повышенная температура) возможно присоединение галогенов к ароматическим соединениям. Практическое значение имеет радикальное хлорирование бензола для получения "гексахлорана" (средство борьбы с вредными насекомыми). В случае гомологов бензола более легко происходит реакция радикального замещения атомов водорода в боковой цепи


III. Реакции окисления аренов Бензол не окисляется даже под действием сильных окислителей (KMnO 4, K 2 Cr 2 O 7 и т.п.). Поэтому он часто используется как инертный растворитель при проведении реакций окисления других органических соединений. В отличие от бензола его гомологи окисляются довольно легко. При действии раствора KMnO 4 и нагревании в гомологах бензола окислению подвергаются только боковые цепи Бензол и его гомологи на воздухе горят коптящим пламенем, что обусловлено высоким содержанием углерода в их молекулах: Бензол и его летучие гомологи образуют с воздухом и кислородом взрывоопасные смеси


Получение аренов Основными природными источниками ароматических углеводородов являются каменный уголь и нефть. При коксовании каменного угля образуется каменноугольная смола, из которой выделяют бензол, толуол, ксилолы, нафталин и многие другие органические соединения. При дегидрировании этилбензола образуется производное бензола с непредельной боковой цепью – винилбензол (стирол) C 6 H 5 -CН=СН 2 (исходное вещество для получения ценного полимера полистирола)


Применение ароматических углеводородов Бензол используется как исходный продукт для получения различных ароматических соединений – нитробензола, хлорбензола, анилина, фенола, стирола и т.д., применяемых в производстве лекарств, пластмасс, красителей, ядохимикатов и многих других органических веществ.


Толуол С 6 Н 5 -СН 3 применяется в производстве красителей, лекарственных и взрывчатых веществ (тротил, тол). Ксилолы С 6 Н 4 (СН 3) 2 в виде смеси трех изомеров (орто-, мета- и пара-ксилолов) – технический ксилол – применяется как растворитель и исходный продукт для синтеза многих органических соединений. Изопропилбензол (кумол) С 6 Н 4 -СН(СН 3) 2 – исходное вещество для получения фенола и ацетона. Винилбензол (стирол) C 6 H 5 -CН=СН 2 используется для получения ценного полимерного материала полистирола Применение ароматических углеводородов


Правила ориентации 1.Заместители, имеющиеся в бензольном ядре, направляют вновь вступающую группу в определенные положения, т.е. оказывают ориентирующее действие. 2.По своему направляющему действию все заместители делятся на две группы: ориентанты первого рода и ориентанты второго рода. Ориентанты 1-го рода (орто-пара-ориентанты) направляют последующее замещение преимущественно в орто- и пара-положения. К ним относятся электронодонорные группы (электронные эффекты групп указаны в скобках): -R (+I); -OH (+M,-I); -OR (+M,-I); -NH 2 (+M,-I); -NR 2 (+M,-I) +M-эффект в этих группах сильнее, чем -I-эффект. Ориентанты 1-го рода повышают электронную плотность в бензольном кольце, особенно на углеродных атомах в орто- и пара-положениях, что благоприятствует взаимодействию с электрофильными реагентами именно этих атомов. Ориентанты 1-го рода, повышая электронную плотность в бензольном кольце, увеличивают его активность в реакциях электрофильного замещения по сравнению с незамещенным бензолом. Особое место среди ориентантов 1-го рода занимают галогены, проявляющие электроноакцепторные свойства: -F (+M


Правила ориентации Ориентанты 2-го рода (мета-ориентанты) направляют последующее замещение преимущественно в мета-положение. К ним относятся электроноакцепторные группы: -NO 2 (–M, –I); -COOH (–M, –I); -CH=O (–M, –I); -SO 3 H (–I); -NH 3 + (–I); -CCl 3 (–I). Ориентанты 2-го рода уменьшают электронную плотность в бензольном кольце, особенно в орто- и пара-положениях. Поэтому электрофил атакует атомы углерода не в этих положениях, а в мета- положении, где электронная плотность несколько выше Все ориентанты 2-го рода, уменьшая в целом электронную плотность в бензольном кольце, снижают его активность в реакциях электрофильного замещения. Таким образом, легкость электрофильного замещения для соединений (приведенных в качестве примеров) уменьшается в ряду: толуол C 6 H 5 CH 3 > бензол C 6 H 6 > нитробензол C 6 H 5 NO 2. бензол C 6 H 6 > нитробензол C 6 H 5 NO 2.">


Анилин Ароматические амины являются более слабыми основаниями, чем аммиак, поскольку неподеленная электронная пара атома азота смещается в сторону бензольного кольца, вступая в сопряжение с его p-электронами. Уменьшение электронной плотности на атоме азота приводит к снижению способности отщеплять протоны от слабых кислот. Поэтому анилин взаимодействует лишь с сильными кислотами (HCl, H 2 SO 4), а его водный раствор не окрашивает лакмус в синий цвет. Таким образом, основные свойства изменяются в ряду: C 6 H 5 NH 2

«Ароматические углеводороды» - Толуол используется как сырье для получения взрывчатого вещества - тринитротолуола. Белая горная порода, состоящая из карбоната кальция. 24. Номенклатура. 15. Сырье для производства фосфорных удобрений. 16. Возможны реакции присоединения, окисления. Томпак. 17. Вывод: Амид. 12. Рубин. 27. Все ароматические соединения - твердые или жидкие вещества.

«Углеводороды» - Итог урока. Фенацетин. Камеры для коксования угля. Аммиак. Этиловый спирт. Схема коксовой печи. Бензин. 2 – рефтификационная колонна. Месторождения полезных ископаемых. Растворители. Пробирка №1. Кокс. Продукты переработки каменного угля. Искусственное созревание плодов. Анилин. Великие ученые. Каменноугольная смола.

«Свойства ароматических углеводородов» - Большое значение имеют синтетические методы получения. Физические свойства. Получение. Получение ароматических углеводородов. Применение. Основным источником получения ароматических углеводородов служат каменноугольная смола, нефть и нефтепродукты. Химические свойства. Винилбензол (стирол) применяется для получения полимерного материала – полистирола.

«Бензол и его свойства» - История. Наряду с бензолом образуются толуол и ксилолы. Коксование каменного угля. Пары бензола могут проникать через неповрежденную кожу. Растворимость в воде 1,79 г/л (при 25 °C). Сильный канцероген. Бензол (C6H6, PhH) - органическое химическое соединение, бесцветная жидкость с приятным сладковатымзапахом.

«Химия Углеводороды» - Задача. План. Плотность паров вещества по воздуху равна 2,966. Указать условия реакций. 4.Составление таблицы: «Классы углеводородов». Определить формулу. Ресурсы. При сгорании 8,6г предельного углеводорода получилось 26,4г углекислого газа и 12,6г воды. Составить изомеры. Обобщение темы «Углеводороды».

«Применение углеводородов» - Проверь себя!!! Велико значение в медицине, парфюмерии и косметике. Цели: Значение алканов в современном мире огромно. Соединения алканов применяются в качестве хладагентов в домашних холодильниках. Метан: производство шин, краски. Используется в медицине, паpфюмеpии и косметике. Циклогексан также широко применяется в качестве растворителя и для синтеза полимеров (капрон, найлон).

Всего в теме 12 презентаций

Cлайд 1

Химические свойства бензола. Получение, применение. Учитель биологии-химии МОУ «СОШ р.п. Озинки» Хорова Людмила Владимировна

Cлайд 2

1. Дегидрирование циклоалканов. 2. Дегидроциклизация (ароматизация алканов): 3. Получение бензола тримеризацией ацетилена. 4. Сплавление солей ароматических кислот со щелочью: Способы получения.

Cлайд 3

Обладая подвижной шестеркой p -электронов, ароматическое ядро является удобным объектом для атаки электрофильными реагентами. Этому способствует также пространственное расположение p -электронного облака с двух сторон плоского s -скелета молекулы. Электрофильное замещение (SE) – механизм реакции взаимодействия ароматических углеводородов с молекулами, содержащими электрофильные частицы. Примеры электрофильных частиц: Cl+, NO2+, CH3+. Химические свойства

Cлайд 4

I стадия: образование p-комплекса, в котором электрофильная частица Х+ притягивается к p-электронному облаку бензольного кольца. II стадия (лимитирующая): образование s-комплекса. Два электрона из p-системы идут на образование s-связи С–Х. При этом ароматичность кольца нарушается. Атом углерода, соединившись с электрофилом Х, переходит из sp2- в sp3-гибридизованное состояние и выходит из системы сопряжения. В системе сопряжения остаются 4 p-электрона, которые делокализованы на 5-ти углеродных атомах кольца (заряд +1). III стадия: отщепления протона Н+, и восстановление ароматичности кольца, поскольку два электрона связи С–Н переходят в p-систему кольца.

Cлайд 5

1. Галогенирование. Бензол не взаимодействует с хлором или бромом в обычных условиях. Реакция может протекать только в присутствии катализаторов - безводных АlСl3, FeСl3, АlВr3. В результате реакции образуются галогенозамещенные арены: 2. Нитрование. Бензол очень медленно реагирует с концентрированной азотной кислотой даже при сильном нагревании. Однако при действии так называемой нитрующей смеси (смесь концентрированных азотной и серной кислот) реакция нитрования проходит достаточно легко:

Cлайд 6

3. Алкилирование по Фриделю-Крафтсу. В результате реакции происходит введение в бензольное ядро алкильной группы с получением гомологов бензола. Реакция протекает при действии на бензол галогеналканов RСl в присутствии катализаторов - галогенидов алюминия. Роль катализатора сводится к поляризации молекулы RСl с образованием электрофильной частицы: В зависимости от строения радикала в галогеналкане можно получить разные гомологи бензола:

Cлайд 7

4.Алкилирование алкенами. Эти реакции широко используются в промышленности для получения этилбензола и изопропилбензола (кумола). Алкилирование проводят в присутствии катализатора АlСl3. Механизм реакции сходен с механизмом предыдущей реакции:

Cлайд 8

Важнейшим фактором, определяющим химические свойства молекулы, является распределение в ней электронной плотности. Характер распределения зависит от взаимного влияния атомов. В молекулах, имеющих только s -связи, взаимное влияние атомов осуществляется через индуктивный эффект. В молекулах, представляющих собой сопряженные системы, проявляется действие мезомерного эффекта. Влияние заместителей, передающееся по сопряженной системе p -связей, называется мезомерным (М) эффектом. В молекуле бензола p -электронное облако распределено равномерно по всем атомам углерода за счет сопряжения. Если же в бензольное кольцо ввести какой-нибудь заместитель, это равномерное распределение нарушается и происходит перераспределение электронной плотности в кольце. Место вступления второго заместителя в бензольное кольцо определяется природой уже имеющегося заместителя. Правила ориентации (замещения) в бензольном кольце.

Cлайд 9

Заместители подразделяют на две группы в зависимости от проявляемого ими эффекта (мезомерного или индуктивного): 1.электронодонорные 2.электроноакцепторные. Электронодонорные заместители проявляют +М- и +I-эффект и повышают электронную плотность в сопряженной системе. К ним относятся гидроксильная группа -ОН и аминогруппа -NН2. Неподеленная пара электронов в этих группах вступает в общее сопряжение с p -электронной системой бензольного кольца и увеличивает длину сопряженной системы. В результате электронная плотность сосредоточивается в орто- и пара-положениях:

Cлайд 10

Алкильные группы не могут участвовать в общем сопряжении, но они проявляют +I-эффект, под действием которого происходит аналогичное перераспределение p -электронной плотности.

Cлайд 11

Электроноакцепторные заместители проявляют -М-эффект и снижают электронную плотность в сопряженной системе. К ним относятся нитрогрупла -NO2, сульфогруппа -SO3Н, альдегидная -СНО и карбоксильная -СООН группы. Эти заместители образуют с бензольным кольцом общую сопряженную систему, но общее электронное облако смещается в сторону этих групп. Таким образом, общая электронная плотность в кольце уменьшается, причем меньше всего она уменьшается в мета-положениях: Полностью галогенизированные алкильные радикалы (например, -ССl3) проявляют -I-эффект и также способствуют понижению электронной плотности кольца. Закономерности преимущественного направления замещения в бензольном кольце называют правилами ориентации.

Cлайд 12

Заместители, обладающие +I-эффектом или +М-эффектом, способствуют электрофильному замещению в орто- и пара-положениях бензольного кольца и называются заместителями (ориентантами) первого рода: Заместители, обладающие -I-эффектом или -М-эффектом, направляют электрофильное замещение в мета-положения бензольного кольца и называются заместителями (ориентантами) второго рода:

Cлайд 13





















1 из 20

Презентация на тему: Ароматические углеводороды

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

Арены Ароматическими углеводородами (аренами) называются вещества, в молекулах которых содержится одно или несколько бензольных колец - циклических групп атомов углерода с особым характером связей. Понятие “бензольное кольцо” требует расшифровки. Для этого необходимо рассмотреть строение молекулы бензола. Первая структура бензола была предложена в 1865г. немецким ученым А. Кекуле:

№ слайда 3

Описание слайда:

Эта формула правильно отражает равноценность шести атомов углерода, однако не объясняет ряд особых свойств бензола. Например, несмотря на ненасыщенность, бензол не проявляет склонности к реакциям присоединения: он не обесцвечивает бромную воду и раствор перманганата калия, т. е. не дает типичных для непредельных соединений качественных реакций. Особенности строения и свойств бензола удалось полностью объяснить только после развития современной квантово-механической теории химических связей. По современным представлениям все шесть атомов углерода в молекуле бензола находятся в sp2-гибридном состоянии. Каждый атом углерода образует s -связи с двумя другими атомами углерода и одним атомом водорода, лежащие в одной плоскости. Валентные углы между тремя s -связями равны 120°. Таким образом, все шесть атомов углерода лежат в одной плоскости, образуя правильный шестиугольник (s -скелет молекулы бензола).

№ слайда 4

Описание слайда:

Каждый атом углерода имеет одну негибридизованную р-орбиталь. Шесть таких орбиталей располагаются перпендикулярно плоскому s -скелету и параллельно друг другу (см. рис. а). Все шесть электронов взаимодействуют между собой, образуя p -связи, не локализованные в пары как при образовании двойных связей, а объединенные в единое p -электронное облако. Таким образом, в молекуле бензола осуществляется круговое сопряжение. Наибольшая p -электронная плотность в этой сопряженной системе располагается над и под плоскостью s -скелета (см. рис. б).

№ слайда 5

Описание слайда:

В результате все связи между атомами углерода в бензоле выровнены и имеют длину 0,139нм. Эта величина является промежуточной между длиной одинарной связи в алканах (0,154нм) и длиной двойной связи в алкенах (0,133 им). Равноценность связей принято изображать кружком внутри цикла (см. рис. в). Круговое сопряжение дает выигрыш в энергии 150 кДж/моль. Эта величина составляет энергию сопряжения - количество энергии, которое нужно затратить, чтобы нарушить ароматическую систему бензола. Такое электронное строение объясняет все особенности бензола. В частности, понятно, почему бензол трудно вступает в реакции присоединения, - это привело бы к нарушению сопряжения. Такие реакции возможны только в очень жестких условиях.

№ слайда 6

Описание слайда:

Номенклатура и изомерия. Условно арены можно разделить на два ряда. К первому относят производные бензола (например, толуол или дифенил), ко второму - конденсированные (полиядерные) арены (простейший из них - нафталин): Гомологический ряд бензола отвечает общей формуле С6Н2n-6.где n>=6

№ слайда 7

Описание слайда:

Структурная изомерия в гомологическом ряду бензола обусловлена взаимным расположением заместителей в ядре. Монозамещенные производные бензола не имеют изомеров положения, так как все атомы в бензольном ядре равноценны. Дизамещенные производные существуют в виде трех изомеров, различающихся взаимным расположением заместителей. Положение заместителей указывают цифрами или приставками: орто- (о-), мета- (м-), пара- (п-). Радикал С6Н5 - называется фенил.

№ слайда 8

Описание слайда:

Физические свойства. Первые члены гомологического ряда бензола (например, толуол, этилбензол и др.) - бесцветные жидкости со специфическим запахом. Они легче воды и нерастворимы в ней. Хорошо растворяются в органических растворителях. Бензол и его гомологи сами являются хорошими растворителями для многих органических веществ. Все арены горят коптящим пламенем ввиду высокого содержания углерода в их молекулах.

№ слайда 9

Описание слайда:

Способы получения. 1. Получение из алифатических углеводородов. При пропускании алканов с неразветвленной цепью, имеющих не менее шести атомов углерода в молекуле, над нагретой платиной или оксидом хрома происходит дегидроциклизация - образование арена с выделением водорода:

№ слайда 10

Описание слайда:

2. Дегидрирование циклоалканов. Реакция происходит при пропускании паров циклогексана и его гомологов над нагретой платиной: 3. Получение бензола тримеризацией ацетилена. 4. Получение гомологов бензола по реакции Фриделя-Крафтса (см. далее). 5. Сплавление солей ароматических кислот со щелочью:

№ слайда 11

Описание слайда:

Химические свойства. Обладая подвижной шестеркой p -электронов, ароматическое ядро является удобным объектом для атаки электрофильными реагентами. Этому способствует также пространственное расположение p -электронного облака с двух сторон плоского s -скелета молекулы (см. рис. б). Для аренов наиболее характерны реакции, протекающие по механизму электрофильного замещения, обозначаемого символом SE (от англ. substitution electrophilic).

№ слайда 12

Описание слайда:

Механизм электрофильного замещения можно представить следующим образом. Электрофильный реагент XY (X является электрофилом) атакует электронное облако, и за счет слабого электростатического взаимодействия образуется неустойчивый p -комплекс. Ароматическая система при этом еще не нарушается. Эта стадия протекает быстро. На второй, более медленной стадии формируется ковалентная связь между электрофилом Х и одним из атомов углерода кольца за счет двух p -электронов кольца. Этот атом углерода переходит из sр2- в sр3-гибридное состояние. Ароматичность системы при этом нарушается. Четыре оставшиеся p -электрона распределяются между пятью другими атомами углерода, и молекула бензола образует карбокатион, или s -комплекс.Нарушение ароматичности энергетически невыгодно, поэтому структура s -комплекса менее устойчива, чем ароматическая структура. Для восстановления ароматичности происходит отщепление протона от атома углерода, связанного с электрофилом (третья стадия). При этом два электрона возвращаются в p -систему и тем самым восстанавливается ароматичность:Реакции электрофильного замещения широко используются для синтеза многих производных бензола.